数值计算
文章平均质量分 54
数值计算课程总结
GarsonW
学习的同时,也别忘记热爱生活!
展开
-
数值计算 - 矩阵的乘法
矩阵乘法是一种特殊的运算,它不同于标量的乘法。给定两个矩阵A和B,矩阵乘法的定义如下:假设矩阵A的大小为m×n(即m行n列),矩阵B的大小为n×p(即n行p列)。注意,A的列数必须等于B的行数,才能进行矩阵乘法。结果是一个新的矩阵C,大小为m×p。C的每个元素由以下公式计算:换句话说,C的每个元素是A的某行与B的某列对应元素的乘积之和。⚠️注意,矩阵乘法不满足交换律,即AB不一定等于BA。此外,矩阵乘法满足分配律和结合律,即A(B+C)=AB+AC,且A(BC)=(AB)C。原创 2023-06-01 19:32:07 · 479 阅读 · 0 评论 -
数值计算 - 常用函数值计算方法
泰勒公式,也称泰勒展开式。是用一个函数在某点的信息,描述其附近取值的公式。如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以利用这些导数值来做系数,构建一个。原创 2023-05-23 17:23:33 · 1010 阅读 · 0 评论 -
数值计算 - 习题复习
⚠️绝对误差通过微分近似来计算基于这样的理念:如果我们在某个点附近考虑一个函数,那么该函数在该点附近的行为可以通过该点的切线来近似。这就是微分的基本概念,也是微分近似的基础。更具体地说,假设我们有一个函数y=f(x),并且我们知道x的一个小的改变Δx会导致y的改变Δy。如果Δx足够小,那么我们可以通过函数在x处的导数来近似计算Δy。这就是所谓的微分近似,数学上可以写成:在此问题中,我们要计算的是正方体体积的绝对误差。正方体的体积V是边长a的函数,V=a^3。原创 2023-05-27 16:58:13 · 1219 阅读 · 0 评论 -
数值计算 - 误差的来源
误差的来源是多方面的,但主要来源为:过失误差,描述误差,观测误差,截断误差和舍入误差。原创 2023-05-20 20:17:25 · 1696 阅读 · 0 评论 -
数值计算 - 利用机器计算的基本方式
设f(x)是定义在[a,b]上的连续函数,当它们的表达式很复杂,甚至写不出来时,我们可以选择若干个离散点求出f(x)在这些点处的函数值或函数值的近似值从而得到一个如下的函数值列表:⚠️提示:对于一个实际的控制系统来说,我们可以直接由数据采集系统获得上面的函数值列表,比如在一些离散的时刻点的温度、压力等等。原创 2023-05-20 19:28:35 · 671 阅读 · 0 评论 -
数值计算 - 误差的概念
误差限。原创 2023-05-20 20:27:52 · 280 阅读 · 0 评论 -
数值计算 - 根据有效数字与相对误差限的关系
⚠️其中,er是相对误差限,e是绝对误差限。原创 2023-05-20 20:42:29 · 2235 阅读 · 0 评论 -
数值计算 - 计算量
我们把作一次浮点数的乘法运算连同一次加法运算的计算量作为计算量的计量单位。原创 2023-05-20 19:56:37 · 603 阅读 · 0 评论