使用gpu版的tensorflow时出现OOM错误(显存溢出错误): CUDA out of memory的解决办法。

本文介绍了如何通过设置`tf.config`来限制TensorFlow在GPU上的内存使用,避免程序因内存不足而报错,特别是在显存为6GB的设备上,建议将内存限制设置为4GB。遇到'RuntimeError: Virtual devices cannot be modified after being initialized'时,需重启电脑并重新配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

gpu版的tensorflow 在执行过程中会默认使用全部的 GPU 内存,给系统保留 200 M,这样容易造成显存溢出,因此我们可以使用如下语句指定 GPU 内存的分配空间:

下面以我自己的电脑为例,进行相关设置。因为我的电脑的显存是6G,所以我可以设置tensorflow程序运行时所占用的显存不能超过6G,这里限制在4G大小。

import tensorflow as tf
#限制消耗固定大小的显存(程序不会超出限定的显存大小,若超出的报错)。
physical_gpus = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_virtual_device_configuration(
    physical_gpus[0], #对0号gpu进行限制
    [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4000)] 
)
logical_gpus = tf.config.list_logical_devices("GPU")
# 注:memory_limit是限制显存大小,我显卡6G,这里设置的4000MB

另外需要特别注意的是,如果在执行上述代码时出现如下报错信息:
RuntimeError: Virtual devices cannot be modified after being initialized
则需要重新启动一下电脑,然后重新执行上述代码就可以了。

### 关于CUDA Out of Memory错误CUDA本的关系 当遇到CUDA out of memory (OOM) 错误,这通常不是由CUDA本直接引起的[^1]。此类错误更多是由运行中的程序试图分配超过GPU显存容量的内存所导致。 然而,在不同本的CUDA中,内存管理和优化策略可能存在差异,这些变化可能间接影响到特定应用程序的表现。例如: - 新CUDA可能会引入更高效的内存管理机制。 - 不同本之间API行为的变化可能导致相同代码在不同本上表现不一致。 因此,如果怀疑问题是由于CUDA本引起,则可以考虑以下几个方面来进一步诊断和解决问题: #### 检查硬件兼容性和驱动更新情况 确保使用GPU设备支持当前安装的CUDA本,并保持最新的NVIDIA驱动程序已安装。 #### 审视代码逻辑及其资源消耗模式 审查应用代码是否存在潜在的内存泄漏或不合理的大规模数据加载操作。对于PyTorch这样的框架来说,可以通过调整`PYTORCH_CUDA_ALLOC_CONF`环境变量来控制CUDA内存分配的行为[^2]。 #### 测试不同的CUDA本 尝试在同一套件下切换至其他稳定发布的CUDA本,观察问题是否依然存在。需要注意的是,更换CUDA本前应先备份现有配置并仔细阅读官方迁移指南。 ```bash export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:516 ``` 上述命令可以在Jupyter Notebook、命令提示符或者其他Python环境中执行以设置CUDA内存分配参数。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值