目录
Ⅰ.原理
- 讨论这个问题需要理解一下物理原型是怎么样的,也就是原来是怎么“退火“的:
- 模拟退火算法的思想借鉴于固体的退火原理,当固体的温度很高的时候,内能比较大,固体的内部粒子处于快速无序运动,当温度慢慢降低的过程中,固体的内能减小,粒子的慢慢趣于有序,最终,当固体处于常温时,内能达到最小,此时,粒子最为稳定。
注意:
- 温度高->运动速度快(温度低->运动速度慢)
- 温度是缓慢(想象成特别慢的那种)降低的
- 温度基本不再变化后,趋于有序(最后内能达到最小,也就是接近最优)
我们通过模拟这个操作,使得我们需要的答案“趋于有序”,也就是最靠近需要的值(最值)
Ⅱ.冷却表参数
L = 200; %马可夫链长度
K = 0.998; %衰减参数
S = 0.01; %步长因子
T=100; %初始温度
YZ = 1e-8; %容差
P = 0; %Metropolis过程中总接受点
(1).马尔科夫链
参考视频
L = 200;
- 含义:这行代码定义了模拟退火算法里的马可夫链长度。在模拟退火算法的每次温度状态下,会进行
L
次迭代尝试寻找更优解。马可夫链长度决定了在每个温度下进行状态转移的次数。 - 作用:较大的
L
能让算法在当前温度下更充分地探索邻域,从而增加找到更优解的可能性,但会增加计算时间;较小的L
会使算法在每个温度下探索不够充分,可能错过更好的解。
(3). 衰减参数K = 0.998;
- 含义:此代码定义了温度的衰减参数。在模拟退火算法中,温度会随着迭代次数不断降低,而
K
用于控制温度下降的速度。 - 作用:温度下降公式通常为
T = K * T
(T
为当前温度)。K
越接近 1,温度下降越慢,算法会有更多时间在局部区域精细搜索,更可能找到全局最优解,但收敛速度慢;K
越小,温度下降越快,算法收敛速度快,但可能过早陷入局部最优解。
(4). 步长因子S = 0.01;
- 含义:这行代码定义了步长因子。在模拟退火算法生成新解时,会在当前解的基础上进行一定扰动,
S
用于控制扰动的幅度。 - 作用:新解的生成一般是
NextX = PreX + S * (rand(1, D) * 2 - 1) * T
(PreX
是当前解,NextX
是新解,D
是变量维数)。较大的S
会使新解在搜索空间中跳跃幅度大,有助于全局搜索,但可能跳过最优解;较小的S
会使新解在当前解附近小范围变动,利于局部搜索。
(5).初试温度 T = 100;
- 含义:这行代码设定了模拟退火算法的初始温度。初始温度是算法开始时的温度值,影响着算法的搜索范围和接受较差解的概率。
- 作用:初始温度较高时,算法接受较差解的概率大,能在搜索空间中广泛探索,利于全局搜索;初始温度较低时,算法接受较差解的概率小,更倾向于在局部区域搜索。
(6).容差 YZ = 1e-8;
- 含义:这行代码定义了容差。容差用于判断算法是否满足终止条件。当目标函数值的变化小于容差时,可认为算法已经收敛到一个较优解,从而终止迭代。
- 作用:合理设置容差能避免算法进行不必要的迭代,提高计算效率。如果容差设置过大,算法可能提前终止,错过更优解;容差设置过小,算法可能会进行过多迭代,浪费计算资源。
(7). P = 0;
- 含义:这行代码将
P
初始化为 0,P
用于记录 Metropolis 过程中总接受点的数量。在模拟退火算法的 Metropolis 准则中,新解可能会被接受或拒绝,P
统计接受新解的次数。 - 作用:通过统计接受点的数量,可以了解算法在迭代过程中的接受情况,辅助分析算法的收敛性和搜索效率。
综上所述,这些参数共同影响着模拟退火算法的搜索性能和收敛速度,合理设置这些参数对于算法能否找到全局最优解至关重要。
Ⅲ.马尔科夫链过程
代码
%%%%%%%%%%%%%%%%%%%%%%模拟退火算法解决函数极值%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
D=10; %变量维数
Xs=20; %上限
Xx=-20; %下限
%%%%%%%%%%%%%%%%%%%%%%%%%%%冷却表参数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = 200; %马可夫链长度
K = 0.998; %衰减参数
S = 0.01; %步长因子
T=100; %初始温度
YZ = 1e-8; %容差
P = 0; %Metropolis过程中总接受点
%%%%%%%%%%%%%%%%%%%%%%%%%%随机选点初值设定%%%%%%%%%%%%%%%%%%%%%%%%%
PreX = rand(D,1)*(Xs-Xx)+Xx;
PreBestX = PreX; %PreBestX 表示到目前为止所找到的最优解
PreX = rand(D,1)*(Xs-Xx)+Xx;
BestX = PreX; %BestX 表示全局最优解
%%%%%%%%%%%每迭代一次退火一次(降温), 直到满足迭代条件为止%%%%%%%%%%%%
deta=abs( func1( BestX)-func1(PreBestX)); %abs 函数会返回该实数的绝对值
while (deta > YZ) && (T>0.001) %当全局最优解和当前温度下最优解的差异大于容差,并且当前温度大于 0.001 时,继续进行迭代。当这两个条件中的任何一个不满足时,循环停止,算法结束。
T=K*T;
%%%%%%%%%%%%%%%%%%%%%在当前温度T下迭代次数%%%%%%%%%%%%%%%%%%%%%%
for i=1:L
%%%%%%%%%%%%%%%%%在此点附近随机选下一点%%%%%%%%%%%%%%%%%%%%%
NextX = PreX + S* (rand(D,1) *(Xs-Xx)+Xx);
%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%%%%%
for ii=1:D
if NextX(ii)>Xs | NextX(ii)<Xx
NextX(ii)=PreX(ii) + S* (rand *(Xs-Xx)+Xx);
end
end
%%%%%%%%%%%%%%%%%%%%%%%是否全局最优解%%%%%%%%%%%%%%%%%%%%%%
if (func1(BestX) > func1(NextX))
%%%%%%%%%%%%%%%%%%保留上一个最优解%%%%%%%%%%%%%%%%%%%%%
PreBestX = BestX;
%%%%%%%%%%%%%%%%%%%此为新的最优解%%%%%%%%%%%%%%%%%%%%%%
BestX=NextX;
end
%%%%%%%%%%%%%%%%%%%%%%%% Metropolis过程%%%%%%%%%%%%%%%%%%%
if( func1(PreX) - func1(NextX) > 0 ) %意味着新解的目标函数值小于当前解的目标函数值,即新解更优。
%%%%%%%%%%%%%%%%%%%%%%%接受新解%%%%%%%%%%%%%%%%%%%%%%%%
PreX=NextX;
P=P+1;
else
changer = -1*(func1(NextX)-func1(PreX))/ T ;
p1=exp(changer);
%%%%%%%%%%%%%%%%%%%%%%%%接受较差的解%%%%%%%%%%%%%%%%%%%%
if p1 > rand
PreX=NextX;
P=P+1;
end
end
trace(P+1)=func1( BestX);
end
deta=abs( func1( BestX)-func1 (PreBestX));
end
disp('最小值在点:');
BestX
disp( '最小值为:');
func1(BestX)
figure
plot(trace(2:end))
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')