课程设计:亚马逊商品评论情感分析
利用爬虫技术抓取亚马逊商品评论数据,通过数据预处理、分词处理以及SVM机器学习模型,对评论进行情感分析,最终生成了针对特定商品的词云图,并得出了评论情感倾向的结论。
1.数据采集与预处理:
利用爬虫技术,高效抓取亚马逊上特定商品的评论数据。
解决反爬虫机制导致的请求被拒绝或限制:在代码中设置了请求头来伪装成浏览器访问
对抓取到的评论数据进行清洗,包括删除重复数据、统一字符编码(UTF-8编码转换为GBK编码),转换字符类型(将全角字符转换为半角字符)、去除停用词(如“的”、“是”等常用但无实际情感意义的词),确保数据质量。
# 删除重复数据
comments = list(set(comments))
2.分词处理与词云分析:
借助jieba库(中文分词库)