一、金融、财务、保险和医疗行业创建 RAG 应用系统的意义
RAG 应用系统在金融、财务、保险和医疗行业中具有重要意义,可高效识别 PDF 和图片中的表格信息,如财务报表、资产负债表、保险理赔单和医疗化验结果等。通过将这些表格转化为结构化数据并存储于向量数据库,RAG 系统能快速检索和分析数据,支持智能决策、优化规划、提升效率,并实现个性化服务。
既然RAG系统在这些行业这么有意义,那该怎么构建RAG应用系统呢?
二、使用开源系统构建的优势
采用开源系统进行构建,可以显著节省时间和成本。一方面,开源系统提供了现成的工具和模型,可以快速搭建和测试功能,无需从零开发;另一方面,开源社区活跃,能够提供持续的更新和技术支持,帮助企业专注于业务逻辑的优化,而不是基础设施的研发,从而提高开发效率并降低维护成本。
延展建议:
-
对于中小型企业,优先选择开源项目,结合部分定制开发,快速满足业务需求。
-
对于资金和技术资源充足的大型企业,自研能带来更大的长期价值,特别是在核心领域打造差异化竞争力。
在实际应用中,还可以采用开源+自研的混合模式,利用开源构建基础框架,结合自研完善特定功能,既能降低成本又可满足个性化需求。
三、开源项目对比
当前市面上有多个 Star 数量超过 10K 的开源项目可供选择,但在实际业务中,如何选择最合适的项目是一个值得探讨的问题。我们将从多个维度对这些项目进行对比分析,最终为大家推荐最适合的解决方案。
值得一提的是,QAnything 自 5 月 17 日后已停止新增功能更新。尽管其代码质量尚可,但由于长期不维护可能导致无法适应快速变化的技术需求,因此本次对比中不再考虑该项目。选择一个持续更新且社区活跃的项目显然更为明智。
1、基本信息
项目 | Star 数量 | 持续维护 | 社区活跃 | 代码质量 | 版权信息 |
|
| ⭐️⭐️⭐️ | ⭐️⭐️⭐️ | ⭐️⭐️⭐️ |
|
|
|
|
|
|
|
|
|
|
|
|
|
- 项目热度上,Dify 和 langchain-chatchat 开源较早,star 数量较多,但是RAGFlow大有后来居上的态势;
- 项目可维护性上,三个项目势均力敌;
- 代码质量上,Dify 相对质量较高;
- 版权问题上,Dify 限制不允许用于构建多租户的 Saas 服务,同时不允许去掉版权信息,其他两个项目没有限制;
2、项目技术栈
RAGFlow
- 前端:React + TypeScript
- 后端:Python + Flask
langchain-chatchat
- 前端:基于 Streamlit 的临时前端
- 后端:Python + FastAPI
Dify
- 前端:Next.js + TypeScript
- 后端:Python + Flask
这三个项目在技术栈上主要差异体现在前端:RAGFlow 和 Dify 使用现代前端框架 React 和 Next.js,支持更复杂的交互;而 langchain-chatchat 的 Streamlit 前端更适合快速原型开发。后端均采用 Python,技术实现难度相对不高。
3、项目架构:
RAGFlow,擅长文档解析,DeepDoc具备完善的文档解析能力,并持续优化;
langchain-chatchat,是从 langchain-0.3.0 之后部署方式也发生了变化,与其他项目的差异不大;
Dify,丰富的召回模式,支持跨知识库召回,工作流编排支持较好;GitHub视频介绍中有架构图。
4、RAG能力
| 文档解析能力 | 知识库检索效果 | 跨知识库检索 |
| ⭐️⭐️⭐️ | ⭐️⭐️⭐️ |
|
| ⭐️⭐️ | ⭐️⭐️⭐️ |
|
| ⭐️⭐️ |
|
|
RAGFlow的核心优势在于其强大的文档解析能力,目前的0.15版本已具备出色的解析功能,并支持构建知识图谱,这在同类工具中具有明显的竞争力。同时,其知识库的检索效果表现优异,最新版本更进一步增强了功能。而Dify在跨知识库检索能力方面表现最为突出,为用户提供了多知识库内容统一检索的强大支持,适合复杂场景的需求。
5、项目部署
项目部署支持多种方式,包括通过 Docker 进行快速部署或直接使用源码部署。对于企业用户,推荐采用源码部署方式,这样可以根据企业的个性化需求对源码进行适配和优化,以实现更灵活的功能扩展和定制化支持,从而更好地满足业务需求。
四、结论
在对比多个热门开源项目后,我个人更倾向推荐功能均衡的RAGFlow,尽管 Dify 也有其独特优势。
我的推荐基于以下几点:
-
文档解析能力:RAGFlow 目前对文档解析的支持最为强大,而知识库作为 RAG 系统的核心,这一能力显得尤为关键。
-
Agent 编排:RAGFlow 自 0.9 版本开始支持 Agent 编排功能,目前已经相当成熟,实际使用体验很好。虽然 Dify 在 Agent 支持上也有不错表现,但 RAGFlow更出色。
-
源码和部署优势:RAGFlow 的源码结构清晰,便于二次开发,且 Docker 组件使用简洁高效,适合快速部署和扩展。
综合以上优势,RAGFlow 是一个值得重点选择的开源项目。只需做好版本管理和社区更新跟进,未来的功能将更加完善,为实际业务提供更强大的支持。
五、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】