VideoRAG: 视觉对齐检索增强长视频理解

Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension

近期,一项由厦门大学和罗切斯特大学联合推出的研究Video-RAG在长视频理解领域取得突破。该方法巧妙地将视觉对齐的文本信息作为辅助文本作为输入,让72B的开源视觉语言模型(LVLM)也能达到商业模型的表现水平。这项研究为长视频理解提供了一个高效且实用的解决方案。相比现有方法,Video-RAG既保持了较高的性能表现,又大大降低了部署和使用成本。

论文:https://arxiv.org/abs/2411.13093
代码:https://github.com/Leon1207/Video-RAG-master
项目网站:https://video-rag.github.io/

一、研究背景

目前的视觉语言模型在理解长视频时仍然具有挑战。主流的方案主要有两类:其一是扩展LVLMs的上下文长度以增强长视频理解能力的方法(如LongVA),其二是将检索增强生成(RAG)以及智能代理(Agent)技术应用于视频任务(如VideoAgent),但这些方法在处理长视频时存在对齐视觉上下文的挑战,并且资源消耗大。微调一个LVLMs需要高质量的长上下文语料,而基于智能代理的方案往往需要商业语言模型(例如GPT-4o)进行驱动,对于API的消耗十分巨大。

二、技术创新

为了解决这些问题,Video-RAG提出了一个轻量级的解决方案:

  • 利用开源工具从视频中提取文字、语音和物体检测等辅助信息

  • 通过检索增强生成(RAG)技术筛选出与问题相关的信息,在解决上下文窗口限制的同时,提取与查询更加对齐的辅助信息

  • 将筛选后的信息与视频帧一起输入到LVLM中

第一步:查询解耦,用户的查询被分解为检索请求,用于从目标视频中提取三类不同的辅助文本。在这个阶段,LVLM仅处理文本信息,不访问视频帧,输出请求格式为JSON。

第二步:辅助文本生成与检索

  • 光学字符识别(OCR)数据库,使用EasyOCR模型从每个采样视频帧中提取文本,并使用Contriever模型将其编码为文本嵌入,存储在FAISS索引中,用于通过RAG技术进行检索;

  • 自动语音识别(ASR)数据库,使用Whisper模型从视频中提取音频转录文本,并将其编码为向量数据库;

  • 对象检测(DET)数据库,使用APE模型从关键帧中提取对象类别和位置信息,并使用场景图预处理对象信息(包括物体位置、数量以及关系信息),构建更连贯的文本表示;

第三步:整合与生成,将检索到的辅助文本与用户查询和视频帧一起输入LVLM,生成最终响应。

Video-RAG利用开源工具从纯视频数据中提取视觉对齐的辅助文本,增强了LVLMs的能力。由于采样的视觉内容通常缺乏与指令查询的显式对齐,容易产生幻觉。而辅助文本的输入可以促进跨模态对齐,同时减少模态之间的差异。通过Video-RAG,检索到的辅助文本帮助引导LVLM更多地关注与查询相关的关键帧,同时促进查询与关键帧之间的跨模态对齐,例如以下这个例子:

三、主要优势

  • 即插即用:可以无缝集成到任何开源LVLM中;

  • 资源友好:在Video-MME基准上,平均每个问题仅需增加约2000个token;

  • 性能优异:在多个基准测试中实现性能提升,并且可达到商业级模型(例如Gemini-1.5-Pro)的性能;


四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值