近年来,大型语言模型(LLM)的广泛应用推动了推理服务系统的不断优化。然而,在离线批量推理场景中,如何平衡计算资源利用效率和性能仍是一个亟待解决的问题。近期,加州大学伯克利分校、华盛顿大学等团队联合提出了一种名为BlendServe的新系统,通过创新的资源感知批处理策略,显著提升了硬件利用率与推理吞吐量。本文将带您快速了解这项研究的核心亮点、背景、方法创新及行业意义。
核心看点
BlendServe的核心目标是通过重新排序和重叠请求来最大化硬件资源利用率,同时保持高前缀共享率。实验表明,该系统在多种合成多模态工作负载下表现出色:
- 吞吐量提升:相比现有的行业标准(如vLLM和SGLang),BlendServe实现了高达1.44 倍的吞吐量加速。
- 资源重叠优化:通过资源感知前缀树的设计,系统能够有效结合计算密集型和内存密集型请求,实现资源调度的最佳平衡。
- 前缀共享保持:即使在优化资源使用的同时,BlendServe仍能保持接近最优的前缀共享率(超过 97% )。
- 通用性强:无论是文本生成、视频理解还是多模态任务,BlendServe均展现出稳定的性能优势。
这些突破为离线推理任务提供了全新的解决方案,特别是在大规模多模态数据处理中具有重要应用价值。
研究背景
在传统的在线推理服务中,低延迟是首要目标,因此系统设计通常采用严格的“先到先服务”策略(FCFS)。然而,在离线批量推理场景中,延迟要求相对宽松,这为更灵活的请求调度和资源优化提供了可能。近年来,随着Transformer架构的普及,模型的输入输出长度变得更加多样化,例如长上下文推理(如Tree of Thoughts)、复杂推理链路(如Chain of Thought)以及多模态扩展(如LWM、Unified-IO等)。
这种多样性带来了新的挑战:一方面,不同请求对计算资源(如 GPU 算力)和内存带宽的需求差异显著;另一方面,现有技术(如NanoFlow)虽然尝试通过操作级重叠优化资源使用,但忽略了请求间的资源互补性,导致整体性能受限。因此,如何在离线推理中实现高效资源调度成为了一个关键问题。
BlendServe正是从这一痛点切入,提出了一种兼顾资源重叠和前缀共享的全新调度方法,从而在保证高吞吐量的同时降低推理成本。
核心贡献
方法创新:资源感知前缀树
为了实现资源调度的全局优化,BlendServe引入了一种新颖的资源感知前缀树结构。这一结构不仅能够捕获请求之间的前缀共享关系,还能通过节点的计算密度值量化其资源需求特性。具体而言:
- 计算密度定义:计算密度(ρ®)是计算时间与内存绑定操作时间的比值。通过这一指标,系统能够区分计算密集型和内存密集型请求,并将其分别排列在树的左侧和右侧。
- 双扫描算法:在排序后的前缀树上,BlendServe采用一种启发式双扫描算法,从左至右和从右至左同时扫描叶子节点,动态构建混合型请求批次。这种方法确保了计算与内存资源的均衡使用,同时保留了高前缀共享率。
实验结果表明,相较于仅依赖深度优先搜索(DFS)的传统方法,BlendServe在吞吐量上平均提升了 20.84% (基准:NanoFlow-DFS)。
理论突破:前缀共享与资源重叠的权衡
传统方法通常在前缀共享和资源重叠之间存在权衡:追求高前缀共享率可能导致资源分配不均,而单纯优化资源重叠则可能牺牲前缀共享带来的性能增益。BlendServe通过理论建模解决了这一问题:
- 首先,系统基于计算密度对请求进行分层排序,确保计算密集型和内存密集型请求的分布均匀。
- 其次,通过动态调整 GPU 内存分区,系统能够在每个批次内实现最佳资源重叠比例(即计算密度接近 1),从而最大化硬件利用率。
在实际测试中,BlendServe达到了 86.55% 的理论最优吞吐量,显著优于现有基线。
实证成果:广泛适用的性能提升
研究团队在多个合成工作负载上验证了BlendServe的性能,包括WildChat、ShareGPT、Azure-Trace和OpenVid等代表性数据集。结果显示:
- 在高前缀共享率场景下,系统性能稳定,吞吐量提升幅度达 19.34%-22.65% 。
- 在低前缀共享率场景下,系统仍能通过高效的资源重叠策略实现 14%-34% 的性能提升。
此外,BlendServe的灵活性使其适用于分布式环境,能够轻松扩展至多 GPU 或多节点部署,契合当前大规模推理服务的发展趋势。
行业意义
BlendServe的研究成果不仅为离线推理任务提供了全新的思路,还对整个 AI 推理服务领域产生了深远影响:
- 推动多模态推理发展:随着多模态模型(如EMU、VILA-U)的兴起,推理系统需要处理更加复杂的资源需求。BlendServe的资源感知机制为这类任务提供了高效解决方案,有助于进一步降低计算成本。
- 契合绿色计算趋势:通过提高硬件利用率,BlendServe能够显著减少推理任务的能耗,符合碳中和政策导向,助力绿色数据中心建设。
- 引领技术变革:该研究为未来的推理系统设计提供了重要参考,特别是在分布式环境下的资源调度优化方面,有望推动新一代推理框架的诞生。
结语
BlendServe以其独特的资源感知批处理策略,成功突破了离线推理中的资源调度瓶颈,为多模态任务和大规模推理服务带来了显著的性能提升。未来,随着更多应用场景的落地,这一技术有望成为 AI 推理领域的核心工具之一,为行业带来更大的变革力量。
👉 论文链接:
https://arxiv.org/abs/2411.16102
第一作者Yilong Zhao和Shuo Yang深耕AI 系统优化领域多年,曾参与多项高性能计算与机器学习系统的研究项目。本研究得到了加州大学伯克利分校、华盛顿大学以及 xAI 实验室的联合支持。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】