一、反射模式(Reflection pattern)
以下是该模式的工作流程介绍:
- 用户输入查询:用户通过界面或API向agent发送一个查询请求。
- LLM生成初始输出:大型语言模型(LLM)接收用户的查询,并生成一个初步的响应。
- 用户反馈:用户对初步的响应进行评估并给出反馈。
- LLM反射输出:基于用户的反馈,LLM对初步的响应进行反思,即重新评估和调整其生成的输出。
- 迭代过程:这一过程可能需要多次迭代,直到用户对最终的响应感到满意为止。
- 返回给用户:最终的响应被返回给用户,用户可以通过界面或API接收到结果。
这种模式通常用于提高大型语言模型的交互性和准确性,通过用户反馈不断优化模型的输出。
二、工具使用模式(Tool use pattern)
以下是该模式的工作流程介绍:
- 用户输入查询:用户通过界面或API向agent发送一个查询请求。
- LLM处理查询:agent内部的大型语言模型(LLM)接收用户的查询,并对其进行处理。在这个过程中,LLM可能需要调用外部工具或API来获取更准确的信息。
- 调用工具和API:如果查询需要额外的信息或数据,LLM会调用存储在vector数据库中的工具和API来获取这些信息。
- 生成响应:LLM根据从工具和API获取的信息生成一个响应,这个响应可能是文本、表格或其他格式的数据。
- 返回给用户:最后,生成的响应被返回给用户,用户可以通过界面或API接收到结果。
这种模式通常用于增强大型语言模型的能力,使其能够访问外部资源以提供更全面和准确的回答。
三、ReAct模式(ReAct Pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- LLM(Reason):接收到用户的查询后,推理型语言模型(LLM - Reason)会分析查询并生成相应的策略或计划。
- 工具(Tools):根据生成的策略或计划,系统调用相应的工具来执行具体的操作。
- 环境(Environment):工具执行操作后,将结果反馈给环境。
- LLM(Generate):环境返回的结果被反馈给生成型语言模型(LLM - Generate),生成型语言模型根据结果生成最终的响应。
- 响应(Response):生成型语言模型生成的响应返回给用户。
这种模式通过结合推理型语言模型和生成型语言模型,实现了从用户查询到最终响应的完整闭环。推理型语言模型负责策略生成,生成型语言模型负责结果解释和响应生成。
四、规划模式(Planning Pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- 计划器(Planner):接收到用户的查询后,计划器会分析并生成一系列任务(Generated tasks)。这些任务可能是具体的执行步骤或子任务。
- 生成的任务:计划器生成的任务会被传递给执行者(ReAct Agent)。
- 执行者(ReAct Agent):执行者根据生成的任务执行单个任务,并将结果返回给计划器。
- 结果反馈:执行者执行完一个任务后,会将结果反馈给计划器。如果所有任务都已完成,则计划器会确认任务完成(Finished?)。
- 响应(Response):计划器根据任务完成情况和结果,生成最终的响应(Response),返回给用户。
这个模式确保了任务的有序执行和结果的及时反馈,从而实现用户需求的有效处理。
五、多智能体模式(Multi-agent pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- 项目经理代理(PM agent):接收到用户的查询后,项目经理代理(PM agent)会分析并分配任务给其他代理。
- DevOps代理(DevOps agent):项目经理代理将任务分配给DevOps代理(DevOps agent)。
- 技术负责人代理(Tech lead agent):DevOps代理将任务进一步分配给技术负责人代理(Tech lead agent)。
- 软件开发工程师代理(SDE agent):技术负责人代理将任务分配给软件开发工程师代理(SDE agent)。
- 执行任务:每个代理根据分配的任务执行相应的操作,并将结果反馈给上一级代理。
- 结果反馈:最终,所有代理完成任务后,将结果反馈给项目经理代理。
- 综合响应:项目经理代理综合所有代理的结果,生成最终的响应(Response),返回给用户。
这种模式通过多个代理协同工作,可以更高效地处理复杂任务,确保任务的有序执行和结果的及时反馈。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】