哈夫曼树
介绍
-
给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
-
赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
-
路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
-
结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
-
树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
-
WPL最小的就是赫夫曼树
构成赫夫曼树的步骤
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
代码实现
节点类
package com.datestructures.tree.huffmantree;
//节点类
//为了让Node 对象支持排序Collections集合排序
//让Node 实现Comparable<Node>接口
public class Node implements Comparable<Node>{
int value;//节点权值
Node left;//指向左子节点
Node right;//指向右子节点
public Node(int value) {
this.value = value;
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();;
}
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
@Override
public int compareTo(Node o) {
//从小到大排序 =>this.value-o.value 从大到小 => o.value-this.value
return this.value-o.value;
}
}
哈夫曼树类
package com.datestructures.tree.huffmantree;
import java.util.ArrayList;
import java.util.Collections;
public class HuffmanTree {
public static void main(String[] args) {
int[] arr = {13,7,8,3,29,6,1};
Node root = createHuffmanTree(arr);
preOrder(root);
}
//前序遍历哈夫曼树
public static void preOrder(Node root){
if(root!=null){
root.preOrder();
}else{
System.out.println("空树,不能遍历");
}
}
//创建赫夫曼树的方法
public static Node createHuffmanTree(int[] arr){
/*
为了方便操作将数组都转化成节点
1.遍历数组
2.将arr中的每个元素构成一个节点
3.将节点放入到ArrayList中
*/
ArrayList<Node> nodes = new ArrayList<>();
for(int value : arr){
nodes.add(new Node(value));
}
//处理过程
while (nodes.size()>1){
//排序 从小到大
Collections.sort(nodes);
System.out.println(nodes);
//取出根节点权值最小的两棵二叉树
//(1)取出节点权值最小的一棵二叉树
Node leftNode = nodes.get(0);
//(2)取出节点权值第二小的一棵二叉树
Node rightNode = nodes.get(1);
//(3)构建一棵新的二叉树
Node parent = new Node(leftNode.value+rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
//(4)从nodes中移除刚刚处理过的二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//(5)将新的二叉树加入到nodes中
nodes.add(parent);
}
//返回哈夫曼树的根节点
return nodes.get(0);
}
}