常见数据结构
- 数据结构概述
- 栈
- 队列
- 数组
- 链表
- 二叉树
- 二叉查找树
- 平衡二叉树
- 红黑树
1. 数据结构
1.1 数据结构之栈和队列【记忆】
-
栈结构
先进后出
-
队列结构
先进先出
1.2 数据结构之数组和链表【记忆】
-
数组结构
查询快、增删慢
-
队列结构
查询慢、增删快
1.3 二叉树【理解】
-
二叉树的特点
-
二叉树中,任意一个节点的度要小于等于2
- 节点: 在树结构中,每一个元素称之为节点
- 度: 每一个节点的子节点数量称之为度
-
二叉树结构图
1.4 二叉查找树【理解】
-
二叉查找树的特点
-
二叉查找树,又称二叉排序树或者二叉搜索树
-
每一个节点上最多有两个子节点
-
左子树上所有节点的值都小于根节点的值
-
右子树上所有节点的值都大于根节点的值
-
二叉查找树结构图
-
二叉查找树和二叉树对比结构图
-
二叉查找树添加节点规则
- 小的存左边
- 大的存右边
- 一样的不存
1.5 平衡二叉树【理解】
-
平衡二叉树的特点
-
二叉树左右两个子树的高度差不超过1
-
任意节点的左右两个子树都是一颗平衡二叉树
-
平衡二叉树旋转
-
旋转触发时机
- 当添加一个节点之后,该树不再是一颗平衡二叉树
-
左旋
- 就是将根节点的右侧往左拉,原先的右子节点变成新的父节点,并把多余的左子节点出让,给已经降级的根节点当右子节点
- 就是将根节点的右侧往左拉,原先的右子节点变成新的父节点,并把多余的左子节点出让,给已经降级的根节点当右子节点
-
右旋
- 就是将根节点的左侧往右拉,左子节点变成了新的父节点,并把多余的右子节点出让,给已经降级根节点当左子节点
- 就是将根节点的左侧往右拉,左子节点变成了新的父节点,并把多余的右子节点出让,给已经降级根节点当左子节点
-
平衡二叉树和二叉查找树对比结构图
-
平衡二叉树旋转的四种情况
-
左左
- 左左:当根节点左子树的左子树有节点插入,导致二叉树不平衡
- 如何旋转:直接对整体进行右旋即可
-
左右
- 左右:当根节点左子树的右子树有节点插入,导致二叉树不平衡
- 如何旋转: 先在左子树对应的节点位置进行左旋,在对整体进行右旋
-
右右
- 右右:当根节点右子树的右子树有节点插入,导致二叉树不平衡
- 如何旋转: 直接对整体进行左旋即可
-
右左
- 右左:当根节点右子树的左子树有节点插入,导致二叉树不平衡
- 如何旋转: 先在右子树对应的节点位置进行右旋,在对整体进行左旋
1.6 红黑树【理解】
-
红黑树的特点
-
平衡二叉B树
-
每一个节点可以是红或者黑
-
红黑树不是高度平衡的,它的平衡是通过"自己的红黑规则"进行实现的
-
红黑树的红黑规则有哪些
-
每一个节点或是红色的,或者是黑色的
-
根节点必须是黑色
-
如果一个节点没有子节点或者父节点,则该节点相应的指针属性值为Nil,这些Nil视为叶节点,每个叶节点(Nil)是黑色的
-
如果某一个节点是红色,那么它的子节点必须是黑色(不能出现两个红色节点相连 的情况)
-
对每一个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点
-
红黑树添加节点的默认颜色
- 添加节点时,默认为红色,效率高
- 添加节点时,默认为红色,效率高
-
红黑树添加节点后如何保持红黑规则
- 根节点位置
- 直接变为黑色
- 非根节点位置
- 父节点为黑色
- 不需要任何操作,默认红色即可
- 父节点为红色
- 叔叔节点为红色
- 将"父节点"设为黑色,将"叔叔节点"设为黑色
- 将"祖父节点"设为红色
- 如果"祖父节点"为根节点,则将根节点再次变成黑色
- 叔叔节点为黑色
- 将"父节点"设为黑色
- 将"祖父节点"设为红色
- 以"祖父节点"为支点进行旋转
- 叔叔节点为红色
- 父节点为黑色
- 根节点位置