背包问题(动态规划)

目录

01背包问题

完全背包问题

多重背包问题


01背包问题

题目描述:

参考代码: 

# dp[i][j]定义为在前i件物品中能够装入容量为j的背包中的最大价值
# n为物品数量,v为背包容量
# w[i]为第i件物品的价值,c[i]为第i件物品的体积

def Knapsack(n, v, w, c):

    # 创建一个(n+1)*(v+1)的二维数组
    dp = [[0 for i in range(v + 1)] for j in range(n + 1)]
    
    # 依次计算n件物品装入容量为0~v的背包的最大价值
    for i in range(1, n + 1):
        for j in range(1, v + 1):
            # 如果第i件物品的体积大于背包容量j,那么就不装入背包
            if c[i - 1] > j:
                dp[i][j] = dp[i - 1][j]
            else:
                # 装入背包或者不装入背包,取最大值
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i - 1]] + w[i - 1])
    # 返回最大价值                               
    return dp[n][v]

if __name__ == '__main__':
    n,v = map(int, input().split())
    w = []
    c = []
    for _ in range(n):
        _c, _w = map(int, input().split())
        c.append(_c)
        w.append(_w)
        
    print(Knapsack(n, v, w, c))

完全背包问题

题目描述:

 参考代码段:

# 完全背包问题
# 背包容量:bag_capacity
# 物品价格:price
# 物品重量:weights

# 初始化一个二维数组dp[len(price)+1][bag_capacity],dp[i][j]代表前i件物品在总重量为j的情况下,可以获得的最大价值

#关于问题理解,为什么dp的行和列是len(price)+1,bag_capacity
#在完全背包问题中,没有物品数量的限制,这意味这不用考虑物品数量
#同时意味着,不同物品的price一定是不一样的
#因此二维数组的行列意义 行表示背包容量,列表示不同物品的价值

def complete_capacity(bag_capacity, weights, price):
    
    n = len(price)
    
    #创建数组
    dp = [[0 for i in range(bag_capacity+1)] for j in range(n+1)]
    
    #for循环遍历
    for i in range(1,n+1):
        for j in range(1,bag_capacity+1):
            if j >= weights[i-1]:
                dp[i][j] = max(dp[i-1][j], dp[i][j-weights[i-1]]+price[i-1])
            else:
                dp[i][j] = dp[i-1][j]
                
    return dp[n][bag_capacity]

if __name__ == "__main__":
    
    N, bag_capacity = map(int, input().split())
    
    weights = []
    prices = []
    
    for i in range(N):
        w_,p_ = map(int, input().split())
        weights.append(w_)
        prices.append(p_)

    print(complete_capacity(bag_capacity,weights,prices))

对比:

题目条件不同:01背包问题中的物品数量均为1,而完全背包问题物品数量不受限制

使用动态规划法解决问题时,可以发现两种问题的代码模式基本相同。

主要的不同是:

动态规划数组的含义不同

状态转移的执行语句不同

个人理解:

01背包的状态转移

 如果将物品放入,其状态参考i-1行更新

完全背包的状态转移

如果将物品放入,其状态参考第i行更新

当然,完全背包问题使用其它方法求解更加简单快捷,这里只是将两种背包问题进行比较。

多重背包问题

问题描述:

 参考代码:

# 解决0-1背包问题
def knapsack(N, V, w, v):
    # 初始化动态规划表
    dp_table = [[0 for j in range(V + 1)] for i in range(N + 1)]
    # 使用动态规划求解
    for i in range(1, N + 1):
        for j in range(1, V + 1):
            # 如果第i件物品的重量大于背包容量j,则不装入背包
            # 由于weight和value数组下标都是从0开始,故注意第i个物品的重量为w[i-1],价值为v[i-1]
            if w[i - 1] > j:
                dp_table[i][j] = dp_table[i - 1][j]
            else:
                dp_table[i][j] = max(dp_table[i - 1][j], dp_table[i - 1][j - w[i - 1]] + v[i - 1])
    # 返回最大价值
    return dp_table[N][V]
 
if __name__ == '__main__':
    #N:表示题目中物品的总类别
    #count:表明题目中所有物品的总数量
    N, V = map(int, input().split())
    w = []
    v = []
    count = 0
    for i in range(N):
        wi, vi, si = map(int, input().split())
        count += si
        # 物品数量可以大于1,因此循环si次将其加入物品
        for _ in range(si):
            w.append(wi)
            v.append(vi)
    print(knapsack(count, V, w, v))

代码理解:在解决这个多重背包问题时,该解决办法是巧妙地将其转换为01背包问题,去除“多重”即物品数量这个影响因素,这样处理大大降低了题目理解和解决的难度。

值得注意的是,在该题目中,输入数据N不再代表数据的数量,因此我们需要count变量另外记载物品的总数,用于动态规划表的建立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_56318237

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值