目录
01背包问题
题目描述:
参考代码:
# dp[i][j]定义为在前i件物品中能够装入容量为j的背包中的最大价值
# n为物品数量,v为背包容量
# w[i]为第i件物品的价值,c[i]为第i件物品的体积
def Knapsack(n, v, w, c):
# 创建一个(n+1)*(v+1)的二维数组
dp = [[0 for i in range(v + 1)] for j in range(n + 1)]
# 依次计算n件物品装入容量为0~v的背包的最大价值
for i in range(1, n + 1):
for j in range(1, v + 1):
# 如果第i件物品的体积大于背包容量j,那么就不装入背包
if c[i - 1] > j:
dp[i][j] = dp[i - 1][j]
else:
# 装入背包或者不装入背包,取最大值
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i - 1]] + w[i - 1])
# 返回最大价值
return dp[n][v]
if __name__ == '__main__':
n,v = map(int, input().split())
w = []
c = []
for _ in range(n):
_c, _w = map(int, input().split())
c.append(_c)
w.append(_w)
print(Knapsack(n, v, w, c))
完全背包问题
题目描述:
参考代码段:
# 完全背包问题
# 背包容量:bag_capacity
# 物品价格:price
# 物品重量:weights
# 初始化一个二维数组dp[len(price)+1][bag_capacity],dp[i][j]代表前i件物品在总重量为j的情况下,可以获得的最大价值
#关于问题理解,为什么dp的行和列是len(price)+1,bag_capacity
#在完全背包问题中,没有物品数量的限制,这意味这不用考虑物品数量
#同时意味着,不同物品的price一定是不一样的
#因此二维数组的行列意义 行表示背包容量,列表示不同物品的价值
def complete_capacity(bag_capacity, weights, price):
n = len(price)
#创建数组
dp = [[0 for i in range(bag_capacity+1)] for j in range(n+1)]
#for循环遍历
for i in range(1,n+1):
for j in range(1,bag_capacity+1):
if j >= weights[i-1]:
dp[i][j] = max(dp[i-1][j], dp[i][j-weights[i-1]]+price[i-1])
else:
dp[i][j] = dp[i-1][j]
return dp[n][bag_capacity]
if __name__ == "__main__":
N, bag_capacity = map(int, input().split())
weights = []
prices = []
for i in range(N):
w_,p_ = map(int, input().split())
weights.append(w_)
prices.append(p_)
print(complete_capacity(bag_capacity,weights,prices))
对比:
题目条件不同:01背包问题中的物品数量均为1,而完全背包问题物品数量不受限制
使用动态规划法解决问题时,可以发现两种问题的代码模式基本相同。
主要的不同是:
动态规划数组的含义不同
状态转移的执行语句不同
个人理解:
01背包的状态转移
如果将物品放入,其状态参考i-1行更新
完全背包的状态转移
如果将物品放入,其状态参考第i行更新
当然,完全背包问题使用其它方法求解更加简单快捷,这里只是将两种背包问题进行比较。
多重背包问题
问题描述:
参考代码:
# 解决0-1背包问题
def knapsack(N, V, w, v):
# 初始化动态规划表
dp_table = [[0 for j in range(V + 1)] for i in range(N + 1)]
# 使用动态规划求解
for i in range(1, N + 1):
for j in range(1, V + 1):
# 如果第i件物品的重量大于背包容量j,则不装入背包
# 由于weight和value数组下标都是从0开始,故注意第i个物品的重量为w[i-1],价值为v[i-1]
if w[i - 1] > j:
dp_table[i][j] = dp_table[i - 1][j]
else:
dp_table[i][j] = max(dp_table[i - 1][j], dp_table[i - 1][j - w[i - 1]] + v[i - 1])
# 返回最大价值
return dp_table[N][V]
if __name__ == '__main__':
#N:表示题目中物品的总类别
#count:表明题目中所有物品的总数量
N, V = map(int, input().split())
w = []
v = []
count = 0
for i in range(N):
wi, vi, si = map(int, input().split())
count += si
# 物品数量可以大于1,因此循环si次将其加入物品
for _ in range(si):
w.append(wi)
v.append(vi)
print(knapsack(count, V, w, v))
代码理解:在解决这个多重背包问题时,该解决办法是巧妙地将其转换为01背包问题,去除“多重”即物品数量这个影响因素,这样处理大大降低了题目理解和解决的难度。
值得注意的是,在该题目中,输入数据N不再代表数据的数量,因此我们需要count变量另外记载物品的总数,用于动态规划表的建立。