Codeforces刷题笔记-----好题大杂烩

本文探讨了如何在给定数组条件下通过最少的平局来最大化乘积和,同时介绍了解决SequencePairWeight问题的高效O(N^2)算法,以及如何在团队比赛中设计平衡赛制以减少平局,确保所有队伍最终得分一致。
摘要由CSDN通过智能技术生成

​​​​​​​​​​​​​​​​在这里插入图片描述

C. Sequence Pair Weight

题目大意
给定a,b两个数组,可选择a的子数组进行至多一次的翻转操作,使得 ∑ i = 1 n a i ∗ b i \sum_{i=1}^{n}{a_i*b_i} i=1naibi最大

题解

暴力做法: O ( n 3 ) O(n^3) O(n3),枚举每个区间并进行翻转操作求和的最小值

优化:通过枚举区间 [ l , r ] [l,r] [l,r]的中心,然后由中心进行 [ l − 1 , r + 1 ] [l-1,r+1] [l1,r+1]的拓展,可知每次拓展其区间乘积的和都增加 a l ∗ b r + a r ∗ b l a_l*b_r+a_r*b_l albr+arbl,枚举中心的复杂度为 O ( N ) O(N) O(N),拓展的复杂度为 O ( N ) O(N) O(N),因此优化后的复杂度为 O ( N 2 ) O(N^2) O(N2)

D. Maximum Sum of Products

题意

给定n支队伍,每两支队伍都会进行一场比赛,比赛胜利者得3分,失败者不得分,平局各得一分。构造每场比赛的胜负,使得平局数最小的情况下每支队伍的最终得分相同。

题解

此题解法的巧妙之处在于其模型的构造:给每两支队伍之间都连接一条边,表示它们之间会进行一场比赛,建完图后我们可以很容易的发现,当n为奇数时,每支队伍都连有偶数条边,那么我们可以在没有任何平局的情况下解决问题:每支球队应该准确地赢得 ⌊ n / 2 ⌋ ⌊n/2⌋ n/2场比赛并输掉相同数量的比赛。当n为偶数时,每支队伍都连有奇数条边,此时我们可以通过一些平局操作删去一些边,使得每支队伍剩余的边的数量仍为偶数条,然后再按照n为奇数的情况处理即可。
C. Minimum Ties

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值