题目大意
给定a,b两个数组,可选择a的子数组进行至多一次的翻转操作,使得
∑
i
=
1
n
a
i
∗
b
i
\sum_{i=1}^{n}{a_i*b_i}
∑i=1nai∗bi最大
题解
暴力做法: O ( n 3 ) O(n^3) O(n3),枚举每个区间并进行翻转操作求和的最小值
优化:通过枚举区间 [ l , r ] [l,r] [l,r]的中心,然后由中心进行 [ l − 1 , r + 1 ] [l-1,r+1] [l−1,r+1]的拓展,可知每次拓展其区间乘积的和都增加 a l ∗ b r + a r ∗ b l a_l*b_r+a_r*b_l al∗br+ar∗bl,枚举中心的复杂度为 O ( N ) O(N) O(N),拓展的复杂度为 O ( N ) O(N) O(N),因此优化后的复杂度为 O ( N 2 ) O(N^2) O(N2)。
题意
给定n支队伍,每两支队伍都会进行一场比赛,比赛胜利者得3分,失败者不得分,平局各得一分。构造每场比赛的胜负,使得平局数最小的情况下每支队伍的最终得分相同。
题解
此题解法的巧妙之处在于其模型的构造:给每两支队伍之间都连接一条边,表示它们之间会进行一场比赛,建完图后我们可以很容易的发现,当n为奇数时,每支队伍都连有偶数条边,那么我们可以在没有任何平局的情况下解决问题:每支球队应该准确地赢得
⌊
n
/
2
⌋
⌊n/2⌋
⌊n/2⌋场比赛并输掉相同数量的比赛。当n为偶数时,每支队伍都连有奇数条边,此时我们可以通过一些平局操作删去一些边,使得每支队伍剩余的边的数量仍为偶数条,然后再按照n为奇数的情况处理即可。
C. Minimum Ties