Spring Boot、MyBatis、MyBatis-Plus 依赖版本对应关系总结

Spring Boot、MyBatis、MyBatis-Plus 依赖版本对应关系总结

在使用 Spring Boot、MyBatis 和 MyBatis-Plus 时,确保它们的依赖版本兼容是项目正常运行的关键。版本不兼容可能会导致诸如 sqlSessionFactorysqlSessionTemplate 未正确配置等错误。因此,合理选择各个依赖的版本尤为重要。以下是 Spring Boot 各个版本与 MyBatis 和 MyBatis-Plus 的版本对应关系总结。

1. Spring Boot、MyBatis、MyBatis-Plus 依赖版本对应关系表
Spring Boot 版本MyBatis 版本MyBatis-Plus 版本MyBatis-Plus Starter 版本
2.7.x2.2.x3.4.x3.4.x
3.0.x3.5.x3.5.x3.5.x
3.1.x3.5.x3.5.x3.5.x
3.2.x3.5.x3.5.x3.5.x
2. 依赖选择说明
  • MyBatis 版本
    • Spring Boot 2.x 版本推荐使用 MyBatis 2.x 系列。
    • 从 Spring Boot 3.x 开始,推荐使用 MyBatis 3.5.x 系列。它是 MyBatis 当前最稳定的版本,支持最新的 Java 17 特性以及 Spring Boot 3.x API。
  • MyBatis-Plus 版本
    • MyBatis-Plus 3.4.x 适用于 Spring Boot 2.x 系列。
    • MyBatis-Plus 3.5.x 是与 Spring Boot 3.x 系列兼容的最佳选择。此版本优化了对 Java 17 和 Spring Boot 3.x 的支持,同时提高了性能和扩展能力。
  • MyBatis-Plus Starter 版本
    • mybatis-plus-boot-starter 是 MyBatis-Plus 提供的整合 Starter,它包括了 MyBatis-Plus 所需的核心依赖和配置,可以简化项目配置过程。与 Spring Boot 2.x 使用 3.4.x 版本,与 Spring Boot 3.x 则使用 3.5.x 版本。
3. 版本选择注意事项
  • 兼容性问题: 如果在项目中遇到 sqlSessionFactorysqlSessionTemplate 配置错误,最常见的问题是 MyBatis 或 MyBatis-Plus 的版本与 Spring Boot 版本不兼容。务必确保三者的版本处于同一兼容范围内。
  • Spring Boot 3.x 的变化: Spring Boot 3.x 与之前的版本有较大改动,特别是在模块化系统、Java 17 支持等方面。使用 MyBatis 和 MyBatis-Plus 的时候,一定要选择 3.5.x 版本,以便与 Spring Boot 3.x 更好地配合。
4. 依赖示例(Spring Boot 3.1.x + MyBatis 3.5.x + MyBatis-Plus 3.5.x)
<dependencies>

    <!-- Spring Boot Web Starter -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!-- PostgreSQL 驱动 -->
    <dependency>
        <groupId>org.postgresql</groupId>
        <artifactId>postgresql</artifactId>
        <version>42.6.2</version>
    </dependency>

    <!-- MyBatis Plus Starter -->
    <dependency>
        <groupId>com.baomidou</groupId>
        <artifactId>mybatis-plus-boot-starter</artifactId>
        <version>3.5.3.1</version>
    </dependency>

    <!-- Lombok -->
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <scope>provided</scope>
    </dependency>

</dependencies>
5. 常见问题及解决方案
  • 错误提示:Property ‘sqlSessionFactory’ or ‘sqlSessionTemplate’ are required: 这种报错通常是由于 MyBatis-Plus 和 Spring Boot 的版本不兼容造成的。解决方案是检查并升级 MyBatis-Plus 到与 Spring Boot 版本匹配的版本。
  • 版本冲突: 如果项目中有其他依赖版本冲突,确保所有依赖库使用的是兼容的版本,特别是在使用 mybatis-plus-boot-starter 时,MyBatis 和 MyBatis-Plus 的版本必须匹配。
6. 总结

在整合 Spring Boot、MyBatis 和 MyBatis-Plus 时:

  1. 确保所使用的 Spring Boot、MyBatis、MyBatis-Plus 和其 Starter 的版本是相互兼容的。
  2. 对于 Spring Boot 3.x,建议选择 MyBatis 3.5.xMyBatis-Plus 3.5.x,并确保所有依赖库版本一致。
  3. 如果遇到错误,首先检查版本是否匹配,再排查具体配置问题。

通过合理选择依赖版本和 Starter,可以有效避免常见的配置错误和兼容性问题。

### BLIP-2 结合不同结构大模型的方式 BLIP-2 是一种多模态预训练框架,它通过引入 Q-Former 将视觉特征语言模型连接起来[^3]。具体来说: #### 1. **结合 Decoder-only 大模型** 当使用 decoder-only 的大语言模型 (LLM) 时,BLIP-2 主要依靠 Q-Former 提取并传递图像特征给该模型。由于 decoder-only 架构本身是一个单向的语言生成器,因此它的设计更接近传统语言模型的工作模式[^1]。 在这种情况下,Q-Formers 负责将从冻结的图像编码器(Image Encoder)中提取出来的视觉特征转换为适合输入到 LLM 的形式。这些经过处理后的查询向量作为上下文嵌入被附加至提示词序列前部,从而引导后续文本生成过程。 ```python class BLIP2_DecoderOnly: def __init__(self, q_former, llm_decoder): self.q_former = q_former self.llm_decoder = llm_decoder def forward(self, img_features, prompt_tokens): queries = self.q_former(img_features) # Extract visual features via Q-former combined_input = torch.cat([queries, prompt_tokens], dim=1) output = self.llm_decoder(combined_input) # Generate text based on the combined input return output ``` --- #### 2. **结合 Encoder-Decoder 大模型** 对于 encoder-decoder 类型的大模型,则需要分别利用其内部两部分功能:encoder 部分用于理解来自 Q-Former 的信息;而 decoder 则继续完成基于此条件下的自然语言生成任务[^2]。 此时,image transformer 和 text transformer 同样会参到整个流程当中,其中前者负责同固定的图像编码模块互动以获取必要的表征数据,后者则兼具了常规意义上的文本编码解码职责。 ```python class BLIP2_EncoderDecoder: def __init__(self, q_former, enc_dec_model): self.q_former = q_former self.enc_dec_model = enc_dec_model def encode(self, img_features): queries = self.q_former(img_features) # Convert image features into query vectors encoded_output = self.enc_dec_model.encoder(queries) return encoded_output def decode(self, encoded_state, target_seq): decoded_output = self.enc_dec_model.decoder(target_seq, memory=encoded_state) return decoded_output ``` --- ### 训练方法概述 为了使上述架构能够有效运作,在实际操作过程中还需要注意以下几个方面的调整优化策略: - 数据增强技术的应用可以提升系统的泛化能力; - 参数微调阶段应特别关注跨模态间对齐质量改进措施的选择; - 并行计算资源分配合理规划有助于加速整体收敛速度。 此外值得注意的是,尽管当前主流趋势倾向于采用大规模无监督预训练加下游领域特定应用场景下进一步精调相结合的方式来构建此类复杂系统,但对于某些特殊需求场景而言也可能存在其他替代方案值得探索尝试。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值