Ignatius’s puzzle
添加链接描述
思路
1、先把题目含义给搞明白:给定一个方程式f(x)=5x13+13*x5+ka*x,给定一个非负整数k,求能不能找到一个尽量小的非负整数a,使得上述方程式中的x任意取值,结果都能被65整除,如果有,输出a的值,否则输出no
#include <bits/stdc++.h>
using namespace std;
int main(){
int k;
while(scanf("%d", &k) == 1){
k %= 65;
for(int a = 0; a <= 65; a++){
// f(1)=18+a*k
// (f(x+1)-f(x))%65 == 0,即任意x时f(x)同余
if((18+a*k)%65 == 0){
printf("%d\n", a);
break;
}
if(a>=66) printf("no\n");
}
}
return 0;
}
题目大意:方程f(x)=5x13+13*x5+kax;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整出。
现假设存在这个数a ,因为对于任意x方程都成立
所以,当x=1时f(x)=18+ka
又因为f(x)能被65整出,故设n为整数
可得,f(x)=n65;
即:18+ka=n65;
因为n为整数,若要方程成立
则问题转化为,
对于给定范围的a只需要验证,
是否存在一个a使得**(18+ka)%65等于0**
所以容易解得
注意,这里有童鞋不理解为毛a只需到65即可
因为,当a==66时
也就相当于已经找了一个周期了,所以再找下去也找不到适当的a了
如果你非要证明的话,可以利用了取模过程与数的运算的次序上可交换原理简单证明一下