DeepSeek高效提问指南
一、基本原则
- 明确具体:避免模糊描述,明确需求边界
- 结构化表达:使用分点/分步骤描述复杂问题
- 提供上下文:给出相关背景信息和特殊需求
- 格式规范:合理使用代码块/表格等结构化格式
二、高效提问技巧
1. 编程类问题(推荐格式)
语言类型:Python 3.8
功能需求:实现一个带缓存的斐波那契数列计算器
特殊要求:
- 使用LRU缓存策略
- 处理n<0的异常情况
- 输出计算耗时
现有代码:
def fib(n):
if n <= 1:
return n
return fib(n-1) + fib(n-2)
2. 非技术类问题
【主题】人工智能伦理
【背景】我正在撰写关于AI伦理的论文
【需求】需要3个AI技术双刃剑的典型案例
【限制】请提供2018年后的真实案例
三、好 vs 坏提问示例
高效提问 ❤️
我需要用Python处理时间序列数据,具体要求:
1. 输入CSV格式(包含timestamp, value两列)
2. 检测异常值(定义:超出3倍标准差)
3. 输出处理后的数据和新CSV
4. 可视化前后对比(使用matplotlib)
遇到问题:处理缺失值时,pandas插值法效果不理想
低效提问 💔
怎么处理数据?我的代码有问题,帮我看下
四、高级技巧
-
迭代式提问:复杂问题分多轮细化
第一轮:获取基础方案 第二轮:针对方案A的优化建议 第三轮:调试具体实现错误
-
知识库说明(截至2023年10月)
擅长领域: - 编程/算法(Python/Java/C++) - 机器学习/深度学习 - 系统设计 - 技术文档解读 限制领域: × 实时股票数据 × 2023年10月后事件
-
多轮对话技巧
保持上下文: "接上文方案,如果改用Redis集群..." 修正方向: "这个方案成本太高,请提供更经济的实现" 补充约束: "忘记说明:需要兼容Python 3.6版本"
五、常见问题解决
回答不理想时尝试:
- 补充约束条件(性能/成本/兼容性)
- 重新组织问题结构
- 提供更具体的错误信息
- 要求分步骤解释
📌 最佳实践:把自己想象成在指导实习生——提供明确的需求背景、具体的输入输出示例、以及清晰的验收标准,将获得最精准的回答。