中国剩余定理——C++实现

1.程序说明

输入:同余方程的个数n,各方程的参数

输出:同余方程组的解

运行结果:

与课本例题对比:

2.实现思路

  • 求x模m的逆元

采用拓展欧几里得算法计算x模m的逆元,代码如下:

int ni(int x, int m) {
	int r[100], s[100], t[100], q[100];
	r[0] = x;
	r[1] = m;
	s[0] = 1;
	t[0] = 0;
	s[1] = 0;
	t[1] = 1;
	int i = 1;
	while (r[i] != 0) {
		q[i] = r[i - 1] / r[i];
		s[i + 1] = s[i - 1] - q[i] * s[i];
		t[i + 1] = t[i - 1] - q[i] * t[i];
		r[i + 1] = r[i - 1] % r[i];
		i++;
	}
	while (s[i - 1] < 0) {
		s[i - 1] += m;
	}
	return s[i - 1];
}//求x模m的逆元
  • 中国剩余定理

获取方程组的个数以及同余方程的各个参数后,按照中国剩余定理的方式依次求出来Mi及其逆元,完成求解。

3.完整代码

#include<iostream>
using namespace std;
int ni(int x, int m) {
	int r[100], s[100], t[100], q[100];
	r[0] = x;
	r[1] = m;
	s[0] = 1;
	t[0] = 0;
	s[1] = 0;
	t[1] = 1;
	int i = 1;
	while (r[i] != 0) {
		q[i] = r[i - 1] / r[i];
		s[i + 1] = s[i - 1] - q[i] * s[i];
		t[i + 1] = t[i - 1] - q[i] * t[i];
		r[i + 1] = r[i - 1] % r[i];
		i++;
	}
	while (s[i - 1] < 0) {
		s[i - 1] += m;
	}
	return s[i - 1];
}//求x模m的逆元

int main() {
	cout << "请输入方程的个数" << endl;
	int n;
	cin >> n;
	int* b = new int[n];
	int* m = new int[n];
	int* M = new int[n];
	int* x = new int[n];//存放逆元
	int i = 0;
	int sum = 1;//这里sum代表了m的值
	cout << "请依次输入各方程的参数" << endl;
	cout << "格式参考:x≡b(mod m)" << endl;
	for (i = 0; i < n; i++) {
		cout << "请输入第" << i+1 << "个方程的参数(先输入b,后输入m)" << endl;
		cin >> b[i] >> m[i];
		sum *= m[i];
		M[i] = 1;
	}
	for (i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			if (i != j) {
				M[i] *= m[j];
			}
		}
	}
	for (i = 0; i < n; i++) {
		x[i] = ni(M[i], m[i]);
	}
	int ans = 0;
	for (i = 0; i < n; i++) {
		ans += x[i] * M[i] * b[i];
	}
	while (ans - sum >= 0) {
		ans -= sum;
	}
	cout << "该方程组的解为x≡" << ans << "(mod " << sum << ")" << endl;
	cin.get();
	cin.get();
}
  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hyper OS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值