自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(623)
  • 收藏
  • 关注

原创 四级备考要点

作文:背范文以及四级的万能模板听力:多练(每天都听)阅读:选词填空不建议多练;把长篇阅读,句段匹配,仔细阅读,四选一好好练练。

2024-03-24 16:42:29 132

原创 时间序列分析:ARIMA

时间序列分析:ARIMA

2024-02-01 20:51:15 113

原创 11.8每日一题(如何有理化)

11.8每日一题(如何有理化)

2024-01-22 11:40:08 431

原创 11.7每日一题(如何判断函数有界)

11.7每日一题(如何判断函数有界)

2024-01-21 17:18:54 369

原创 11.6每日一题(函数的基本性质)

11.6每日一题(函数的基本定义)

2024-01-20 15:31:27 356

原创 11.5每日一题(关于函数奇偶性的证明)

11.5每日一题(关于函数奇偶性的证明)

2024-01-19 12:12:05 337

原创 11.4每日一题(求反函数)

11.4每日一题(求反函数)

2024-01-18 10:47:41 333

原创 11.3每日一题(分段函数复合函数)

11.3每日一题(分段函数复合函数)

2024-01-17 10:49:08 329

原创 11.2每日一题(复合函数的定义域)

11.2每日一题(复合函数的定义域)

2024-01-16 10:24:40 371

原创 矩阵逼近圆面积

【代码】矩阵逼近圆面积。

2024-01-15 18:22:20 370

原创 句子语气:陈述语气、疑问语气、祈使语气、虚拟语气

​课程目标(重点掌握虚拟语气)陈述语气疑问语气祈使语气虚拟语气非真实条件句中的虚拟语气(标志性词:if)非真实条件句中虚拟语气的构成主句的谓语形式:都是情态动词+动词原形非真实条件句中虚拟语气的具体用法(找if还有从句)牛刀小试虚拟语气在非真实条件中的其他用法非真实条件中的省略与倒装错综时间条件句虚拟语气在其从句中的用法​

2024-01-15 18:20:35 334

原创 中国近代史纲要历史年代尺

中国近代史纲要历史年代尺

2024-01-15 18:17:38 346

原创 1.4离散优化、连续优化、整数规划(0-1规划、指派问题、分支定界法)

​离散优化和连续优化整数规划0-1规划指派问题分支定界法​

2024-01-15 18:16:43 91

原创 直方图:双峰型、折齿型、孤岛型

​直方图又称质量分布图,是一种统计报告图,它是根据具体数据的分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图。用以展示数据的分布情况,诸如众数、中位数的大致位置、数据是否存在缺口或者异常值。直方图虽然也是通过矩形的长度表示数值,但他的宽度一般用于表示各组的组距,因此其高度与宽度均有意义,适合展示大量数据集的统计结果。其次,直方图的表示的数据通常是连续排列双峰型折齿型孤岛型​

2024-01-15 18:15:21 567

原创 11.1每日一题(函数的定义域)

11.1每日一题(函数的定义域)

2024-01-15 14:51:28 348

原创 熵权法+TOPSIS

​TOPSIS算法步骤两个指标,综合评分构造决策矩阵统一指标类型标准化处理计算正理想解和负理想解(最大值最小值)计算距离 (当前减最大再平方)计算相对接近度熵权法什么是熵求信息熵的思路例子归一化注:熵权法计算得分不用过多关注;因为是使用熵权法算权重,再将权重和TOPSIS结合起来基于熵权法的TOPSIS的综合使用:对五个方案进行评价数据正向化(正向化公式不需要记,用的时候直接搜)标准化计算概率矩阵P计算信息熵和信息效用值计算

2024-01-15 10:52:45 178

原创 python的库或函数不会用:使用help函数查看函数

【代码】python的库或函数不会用:使用help函数查看函数。

2024-01-14 19:57:49 433

原创 数学建模的步骤

数学建模的步骤

2024-01-11 13:09:11 94

原创 Python数学实验与建模:目录

​第一章:Python语言快速入门第二章:数据处理与可视化第三章:Python在高等数学和线性代数中的应用第四章:概率论和数理统计第五章:线性规划第六章:整数规划和非线性规划第七章:插值与拟合第八章:微分方程模型第九章:综合评价方法第十章:图论模型第十一章:多元分析第十二章:回归分析第十三章:差分方程模型第十四章:模糊数学第十五章:灰色系统预测第十六章:Monte Carlo模拟第十七章:智能算法第十八章:时间序列分析第十九章:支持

2024-01-07 21:33:43 139

原创 1.3非线性规划、python求约束极值函数、非线性规划案例

非线性规划二次规化的基本形式多元函数多元函数微分多元函数极值求解拉格朗日乘子法法与KKT

2024-01-06 20:00:55 27

原创 1.2线性规划的标准形式、线性规划的python求解

​线性规划的矩阵形式求目标最小(大)值的标准形式第一种形式(规范式:求极小值)第二种形式 (一般式)线性规划的python求解注:此时求的是最大值;若要求最小值则令系数矩阵乘一个-1结果分析:fun:最有函数值列表基本操作元组、字典基本操作集合基本操作单纯形法蒙特卡洛法在线性规划中引入松弛变量什么情况下在线性规划中引入松弛变量引入松弛变量的规划求解​

2024-01-06 16:38:50 132

原创 1.1线性代数的知识

​线性代数基本概念:向量线性代数:矩阵线性代数:行列式线性代数:矩阵运算Python引用numpy库来做矩阵运算Python求一次方程的解​

2024-01-06 15:58:08 150

原创 11.回归项目实例(评估算法、优化算法)【housing.csv(波士顿房价数据集)】

​生成箱型图集成算法调参n_estimators调参ET调参模型的确立​

2024-01-06 13:49:55 170

原创 10.机器学习步骤、回归项目实例(定义问题 、理解数据、数据准备、评估算法、优化算法)【housing.csv(波士顿房价数据集)】

​机器学习步骤机器学习模板步骤一:定义问题步骤二:理解数据步骤三:数据准备步骤四:评估算法(分离数据集--->定义模型的标准--->算法审查--->算法比较)步骤五:优化算法步骤六:结果部署回归项目实例一、导入类库导入数据(如果数据有标题就可以直接用)第二十九行:delim_whitespeace=Ture (分割,靠什么分割的,csv是靠空格分割的)二、数据理解查看特征结果分析:十四个特征对应得类型查看数据前三十行查看统计性描述

2024-01-06 13:29:16 317

原创 9.4python高级绘图:小梯形图、箱型图、特征间关系的图、相关性的分析【回归算法】图【iris.csv数据集(鸢尾花数据集)】【fish.csv数据集】

​例一(小梯形图:与箱型图意思一模一样)代码【iris.csv数据集(鸢尾花数据集)】第十五行:X=不同的品种,Y=不同的宽度结果分析:最中间是中位数,还有上四分位点,下四分位点,最大值、最小值例二(小梯形图:与箱型图意思一模一样)代码第十五行:X=失业年龄,Y=失业的人数,用性别分类,palette='Set2'(设置版式:两者是重叠在一起的)dodge=False(设置水平交错的位置)例三(箱型图)代码结果分析:最大值、上四分位数、中位数、下四分位数、离权值jX

2024-01-05 22:29:49 231

原创 9.3python高级绘图:密度图、密度散点图【insurance.csv数据集(保险数据集)】【iris.csv数据集(鸢尾花数据集)】【housing.csv数据集(波士顿房价数据集)】

​例一(密度图)代码【insurance.csv数据集(保险数据集)】第十一行:设置尺寸第十二行:密度图函数(数据1,数据2:费用,需要隐藏的部分,颜色,低密度的东西显示不显示)例二(密度图)代码【iris.csv数据集(鸢尾花数据集)】第十六行:密度图函数(数据1:鸢尾花的宽度,数据2:鸢尾花的长度,需要隐藏的部分,颜色,低密度的东西显示)例三(密度的散点图)代码【insurance.csv数据集(保险数据集)】第十九行:设置尺寸第二十行:散点密度图函数(x,y)例

2024-01-05 21:42:06 189

原创 9.2python高级绘图:散点图【spotify.csv数据集】【insurance.csv数据集(保险数据集)】

​例一(散点图:可用来表示分布)代码【spotify.csv数据集】第十一行:relplot()本质上是说明两个 变量之间的关系的(X,Y,hue,data,高度,横纵比(aspect)=2)例二(散点图)代码【insurance.csv数据集(保险数据集)】先查看前十行数据例三(散点图:对年龄进行分层)代码【insurance.csv数据集(保险数据集)】第十九行:col=age(按年龄分层),kind=‘line’(用线条类型进行分层),横纵比=0.5结果分析:横纵比比例没有设置好

2024-01-05 19:54:20 203

原创 9.1python高级绘图:折线图【spotify.csv数据集】

​需要的数据集例一:最简单的折线图(用得多)第六、七行:不显示(忽略)没必要的警告第九行:自己设置一些数据(生成的数据:0到10的数据每隔1000给它生成)第十行:把第九行数字的sin函数第十一行:相当于生成一个C1,C2的表格(C1是原始值,C2是sin值)第十二行:设置一个准确度,为了数据显示完整;把所有行的内容显示完整,若不加则很多数据会省略,就看不到数据的概况第十三行:输出使用numpy生成的前十行的数据第十六行:先绘条形图的风格(显示背景的颜色)第十八行:X轴用的是C

2024-01-05 18:32:54 372

原创 8.3算法调参(网格搜索优化、网格随机优化参数)

​超参数 类似于迭代次数是自己设置的就是超参数脊回归: 设置一些惩罚项防止过拟合网格搜索优化(有一定的局限性:在自己设置的参数里面搜索)代码:第二行:导入岭回归类第三行:导入网格搜索优化类第十行:创建岭回归对象第十二行:岭回归的参数(‘alpha’:【1,0.1,0.01,0.001,0】网格搜索优化:搜索里面提供了这么多方式,让它自己遍历,可以多选择一些数,区间)第十三行:让它自己去挑选第十四行:训练结果分析:最优参数为1,即alph

2024-01-05 12:53:46 172

原创 8.2优化模型:集成算法(装袋算法、随机森林、极端随机数 、提升算法、AdaBoot算法、随机梯度提升、投票算法)【几个算法结合起来用】【pima_data.csv数据集】

​为什么有优化模型这个步骤集成方法 集成算法都是有一个num_tree(类似于基础模型树一样 )装袋算法:先将数据分成X和Y,再把训练集X分成若M个子集,M个子集会训练出M个基模型,M个基模型会得出M个预测,再经过综合的评判方法,最后得到一个最好得结果 提升算法:先将数据分成X和Y,先训练得到基模型1,再通过基模型1得到预测;然后基模型1再训练得到基模型2(基模型2修正了基模型12错误和参数)以此类推得到基模型M装袋算法代

2024-01-05 12:20:39 201

原创 8.1算法(模型)比较【pima_data.csv数据集】

​为什么要算法比较: 因为预测之前大概不知道哪一种算法最好,所以需要设计一个实验来比较不同的机器学习的算法,得出最优的机器学习算法代码第十七行:y是一个结果第十八行:设置交叉验证的次数第三十五行:建立一个图表对象第三十六行:设置图表的标题第三十七行:设置图表的轴排布方式第三十八行:展示箱型图第三十九行:设置横坐标第四十行:展示图表结果分析:逻辑回归LR的性能更好;分类树的结果稍差​

2024-01-05 09:32:07 197

原创 7.3选择模型:分类算法(逻辑回归、线性判别分析、K近邻、贝叶斯分类器、分类与回归树、SVM支持向量机)、回归算法:线性回归算法【pima_data.csv数据集、housing.csv数据集】

​分类算法线性算法逻辑回归线性判别分析(和PCA【降维】相似)非线性算法 K近邻贝叶斯分类器分类与回归树逻辑回归(0-1分布:是一个二分类(判别)问题)代码线性判别分析 把高维的模式投影到一个最佳的矢量空间内K近邻算法 样本在特征空间中有K个相似的样本就属于一类的(主要是K怎么选)贝叶斯分类器 基于概率论的公式;此处为朴素贝叶斯

2024-01-05 09:06:27 159

原创 7.2算法评估(对数损失函数、AUC图、混淆矩阵、分类报告)【pima_data.csv数据集】

​算法评估矩阵(模型性能的评价方法)分类准确度(不是最好判断模型的方法)代码对数损失函数 即预测值f(x)与真实值y的差异的程度代码第三十五行:判断得分使用的是对数损失函数AUC图(一般要画,常用)召回率(敏感性) :正样本预测的正确率特异度(负样本预测的正确率)代码:混淆矩阵:每一列是预测的类别数目,每一行是真实的类别数目,就会类1预测成类2的数目出现代码 :第六十九行:验证集是0.33第七十三行:模型的训练第七十四行:模型的预测

2024-01-04 21:45:16 237

原创 7.1模型选择(K折交叉验证分离、弃一交叉验证、重复随机分离 )【pima_data.csv数据集】

7.1模型选择(K折交叉验证分离、弃一交叉验证、重复随机分离)

2024-01-04 20:49:42 206

原创 6.2选择模型:评估算法(分离训练数据集和评估数据集)【pima_data.csv数据集】

​评估算法 我们想知道模型好不好,可以通过观察模型的结果和实际结果的匹配程度判断模型的好坏评估算法方法分离验证集和数据集代码第十行:检验比例是0.33第十一行:随机数种子是4(即随机分割的数据是随机的,而我们设随机数种子就能让每次随机生成的分割数据是一样的,便于检验)第十二行:X训练部分,X的验证部分,Y训练部分,Y验证部分(即用X,Y的训练部分训练模型,用X,Y验证的部分验证模型)第十四行:创建一个模型对象,来验证第十五行:验证完以后,使用这个模型来训练

2024-01-04 12:32:28 191

原创 6.1数据特征选定:单变量特征选择、递归特征消除RFE(常用)、主成分分析PCA、特征的重要性ETC【pima_data.csv数据集】

​为什么需要处理数据特征1、什么是特征选定2、单变量特征选择卡方检验(用得少):如自变量有n种,因变量有m种,需要考虑自变量等于因变量样本的评述的观察值或者期望值的区别或看卡方值对数据结果的影响(卡方值越大越不符合,卡方值越小偏差就越小,卡方值等于0即理论值与预测值完全相同)例:导入库、数据、分割数据第十一行:特征选择 :用单变量特征挑选的函数(得分方式:卡方检验,指标选择4个(最高8个))第十二行:训练第十三行:把精度调整一下,保留三个小

2024-01-04 09:59:54 266

原创 5.2数据预处理:调整数据尺度、正态化数据、标准化数据、二值数据【pima_data.csv数据集】

​为什么需要数据预处理如何数据预处理例一:调整数据尺度(一般使用这个即归一化处理)导入库、导入数据、输入标签把数据分割:前八列为需要预测的属性(即特征属性),最后一列为结果(即输出)所以我们先要分离出x和y(即训练集和结果)进行数据转换 : 先定范围一般为0到1或-1到1(此处全是正数就直接0到1)再对数据进行处理 令所得的结果保留后三

2024-01-03 21:18:57 124

原创 5.1数据可视化:直方图、密度图、多重图表、相关矩阵图、散点矩阵图【pima_data.csv数据集】

​数据可视化直方图:密度图箱型图中间有一条中位数的线,上面:是上四分线,下面:下四分线;圆点是异常值(数据)多重图表:显示不同属性之间的关系 相关矩阵图(放到论文里)第八行:用相关性系数先把结果计算出来第十行:画图:按照111的下标顺序排布第十一行:存入一些参数:刚才计算的相关性,最小值-1(负相关),最大值1(正相关)第十二行:把图例按上去第十三行:生成九个格子第十四、十五行:建立x,y轴第十六、十七行:把名字按上去第十八行:展示一

2024-01-03 20:32:23 160

原创 2、3、4Numpy速成、Pandas速成、数据导入代码、Pandas导入 、numpy导入查看数据 、查看数据的维度、属性、类型、描述性统计、查看数据分布【pima_data.csv数据集】

python的六种基本数据类型。数据理解:了解数据的特征。

2024-01-03 18:20:04 221

原创 1.通过数据训练、预测模型流程、使用鸢尾花数据集进行训练、预测模型分析【Iris.csv数据集】

1.通过数据训练、预测模型流程、使用鸢尾花数据集进行训练、预测模型分析

2024-01-03 12:31:29 54

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除