小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。
一次素质拓展活动中,班上同学安排坐成一个 mm 行 nn 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。
幸运的是,他们可以通过传纸条来进行交流。
纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 (1,1)(1,1),小轩坐在矩阵的右下角,坐标 (m,n)(m,n)。
从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。
班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙,反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 00 表示),可以用一个 0∼1000∼100 的自然数来表示,数越大表示越好心。
小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。
现在,请你帮助小渊和小轩找到这样的两条路径。
输入格式
第一行有 22 个用空格隔开的整数 mm 和 nn,表示学生矩阵有 mm 行 nn 列。
接下来的 mm 行是一个 m×nm×n 的矩阵,矩阵中第 ii 行 jj 列的整数表示坐在第 ii 行 jj 列的学生的好心程度,每行的 nn 个整数之间用空格隔开。
输出格式
输出一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。
数据范围
1≤n,m≤501≤n,m≤50
输入样例:
3 3
0 3 9
2 8 5
5 7 0
输出样例:
34
解决思路:
线性DP
既然要从左上角到右下角来回传两遍,并且第一遍途中走过的点,第二遍不能走,可以等价为从左上角到右下角找两条路线,并途中每个点只能走一次。
f[k][i][j] : k表示当前两条路线同时出发走了多少步,i表示第一条路线的横坐标,纵坐标为 k-i , j表示第二条路线的横坐标,纵坐标为 k-j
代码:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int n, m;
int w[60][60];
int f[120][60][60]; //f[k][i][j] : k表示当前两条路线每一条走了多少步,i表示第一条路线的横坐标,纵坐标为 k-i , j表示第二条路线的横坐标,纵坐标为 k-j
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>w[i][j];
for(int k=2;k<=n+m;k++)
for(int i=max(1,k-m);i<=n&&i<k;i++)
for(int j=max(1,k-m);j<=n&&j<k;j++)
{
if(i!=j||k==2||k==n+m)
{
int t = w[i][k-i]+w[j][k-j];
f[k][i][j] = max(f[k][i][j],f[k-1][i-1][j-1] + t);
f[k][i][j] = max(f[k][i][j],f[k-1][i-1][j] + t);
f[k][i][j] = max(f[k][i][j],f[k-1][i][j-1] + t);
f[k][i][j] = max(f[k][i][j],f[k-1][i][j] + t);
}
}
cout<<f[n+m][n][n];
return 0;
}