647. 回文子串
方法一:动态规划
dp[i][j]:[i,j]范围的下标字符串s是否为回文子串
遍历字符串,每次判断s[i]与s[j]是否相等
①若相等,j-i=0 即单个字符串s[i],那么一定为回文子串,赋值为1
②若相等,j-i=1 即两个相同字符串,那么也一定为回文子串,赋值为1
③若相等,j-i>1 子串的长度大于2,那么就要判断子串内侧的子串是否为回文子串,若是,则该子串为回文子串 即dp[i][j]=dp[i+1][j-1]
若不相等,则不为回文子串,dp值默认为0
遍历顺序,i取决于i+1,i从下len往上0遍历,j取决于j-1,从左i往右len遍历。
因此先遍历最后一个字符。
方法二:双指针法
中心扩散法,i从前向后遍历
①每次以i为中心向左右扩散,若s[start]=s[end]则为一个回文串 (start=end=i)
②每次以[i,i+1]为中心向左右扩散,若s[start]=s[end]则为一个回文串(start=i,end=i+1)
while (start >= 0 && end < size && s.charAt(start) == s.charAt(end)) {
start--;
end++;
res++;
}
516. 最长回文子序列
dp[i][j]:[i,j]范围内的s子串下标回文子串的长度
若s[i]=s[j],长度为[i+1,j-1]最长回文子串长度+2
否则不是回文子串,长度为[i+1,j]和[i,j+1]的最长回文子串长度 的较大值。
i取决于i+1,从下往上遍历,j取决j+1,从前往后遍历。
初始化dp[i][i]=1 即单个字符长度为1
i从len-1开始向前遍历,j从i+1开始向后遍历。
最后返回最后遍历的dp[0][len-1]的值即为该字符串最长回文子串长度