647. 回文子串 & 516. 最长回文子序列

文章介绍了两种解决回文子串问题的方法:动态规划和双指针法。动态规划中,通过dp矩阵判断子串是否为回文,而双指针法采用中心扩散策略。对于最长回文子序列,同样使用动态规划,通过比较子串两端字符和递归计算中间子序列来确定最长长度。
摘要由CSDN通过智能技术生成

647. 回文子串 

方法一:动态规划

        dp[i][j]:[i,j]范围的下标字符串s是否为回文子串

        遍历字符串,每次判断s[i]与s[j]是否相等

①若相等,j-i=0 即单个字符串s[i],那么一定为回文子串,赋值为1 

②若相等,j-i=1 即两个相同字符串,那么也一定为回文子串,赋值为1

③若相等,j-i>1 子串的长度大于2,那么就要判断子串内侧的子串是否为回文子串,若是,则该子串为回文子串 即dp[i][j]=dp[i+1][j-1]

若不相等,则不为回文子串,dp值默认为0

        遍历顺序,i取决于i+1,i从下len往上0遍历,j取决于j-1,从左i往右len遍历。

        因此先遍历最后一个字符。

方法二:双指针法

        中心扩散法,i从前向后遍历

        ①每次以i为中心向左右扩散,若s[start]=s[end]则为一个回文串 (start=end=i)

        ②每次以[i,i+1]为中心向左右扩散,若s[start]=s[end]则为一个回文串(start=i,end=i+1)

        while (start >= 0 && end < size && s.charAt(start) == s.charAt(end)) {
            start--;
            end++;
            res++;
        }

516. 最长回文子序列 

        dp[i][j]:[i,j]范围内的s子串下标回文子串的长度

若s[i]=s[j],长度为[i+1,j-1]最长回文子串长度+2

否则不是回文子串,长度为[i+1,j]和[i,j+1]的最长回文子串长度 的较大值。

i取决于i+1,从下往上遍历,j取决j+1,从前往后遍历。

        初始化dp[i][i]=1 即单个字符长度为1

        i从len-1开始向前遍历,j从i+1开始向后遍历。

        最后返回最后遍历的dp[0][len-1]的值即为该字符串最长回文子串长度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值