1. 深度学习方面
1)NLP有哪些任务:分类任务、生成式任务、序列标注(分词、命名实体识别)、句子关系判断(entaliment、QA)
2)NLP算法了解哪些? Transformer的实现,为什么使用self-attention(其能够解决什么问题--长距离依赖问题以及并行化计算)、Resnet以及为什么要除以sqrt(d_model)
2. 机器学习方面:
1)决策树:怎么确定应该使用哪个属性(信息增益),为什么使用信息增益(信息熵的概念),信息熵的计算公式。
2)贝叶斯分类器:(我说我不会··)
3)集成学习:(我也不会···)
3. 数据结构方面
1)哈希表怎么实现的,哈希表的顶层设计:跳表
2)KNN算法以及K-d tree
4. 专业能力方面:
1)leetcode:
leetcode 最长递增子序列
2)pytorch:
手写self-attention类
5. 项目:
1)介绍自己的项目(一般是第一个)
2)问你该项目(demo)怎么解决实际应用。比如我做的是检索,就问我如果检索的图像是10万张,每一个都是300维(高维空间)怎么解决?----k-d tree
3)或者问你与他们项目实际相关的问题:比如他们的数据都是无监督的,那怎么实现?或者如果连数据集都没有,要怎么实现给一个新闻配图片之类的开放问题。