什么是商业智能(BI)?
商业智能(BI)是一套流程、应用程序和实践,它结合了商业分析、数据挖掘、数据可视化和其他技术,将原始数据转化为有价值的信息,从而帮助组织决策者做出更好的商业决策。
通过运行BI流程,组织需要从内部和外部来源收集数据,为分析做好准备,运行数据查询并创建数据可视化,将最终结果作为报告提供给业务用户,从而推动更好的业务决策,使组织能够增加收入,提高运营效率,获得相对于商业竞争对手的竞争优势。
为什么BI很重要?
它可以使用相关数据帮助企业改善组织的业务运营。有效利用BI工具和技术收集的数据可以转化为公司关于其业务流程和战略的宝贵见解。通过使用BI,它可以帮助组织模仿并做出更好的业务决策,从而提高生产力和收入,从而加速业务增长并增加利润。BI有助于数据可视化,从而提高数据质量,从而提高决策质量,包括:找到增加组织利润的方法;分析顾客行为;将组织的数据与其竞争对手进行比较;跟踪绩效;优化操作;现货市场走势;确定需要解决的问题,等等。BI系统不仅适用于企业,也适用于中小企业。分析人员可以利用BI提供的基准性能和竞争优势,使组织运行更加顺畅高效。
BI是如何工作的?
操作系统
操作系统是数据仓库中的一个广为人知的术语,它指定了一个用于维护组织中日常业务交易记录的系统。操作系统也称为联机事务处理(OLTP)。操作系统必须处理运行中的数据值,包括工资单、库存、订单和其他日常操作数据。
企业资源规划
ERP是一种软件,组织使用它来管理日常业务活动,如会计、采购、项目管理、风险管理和合规,以及供应链运营。完整的ERP套件还包括企业绩效管理,帮助组织规划、预算、预测和报告软件的财务结果。
ERP系统将各种业务流程连接起来,使它们之间的数据流动成为可能。通过组织从多个来源收集的共享事务数据,ERP系统将消除数据重复,并通过单一真实来源提供数据完整性。ERP系统是一个单一的、定义好的数据结构(模型),该数据结构通常有一个公共数据库。这有助于确保整个企业使用的信息是标准化的,并且基于通用定义和用户体验。然后,这些核心结构和跨业务线(如财务、人力资源、工程、营销、运营)驱动的工作流业务流程、连接系统和使用它们的员工相互关联。简而言之,ERP是现代企业中集成了人员、流程和技术的工具。
客户关系管理
CRM是一种用于管理公司与客户和潜在客户之间所有关系的技术。它旨在增加收入和盈利能力,降低成本,提高客户忠诚度。通过使用CRM系统,可以帮助公司与客户保持联系,简化流程,提高盈利能力。
CRM系统可以将公司各个部门的所有信息汇集在一起,实时提供每个客户的全面视图。
这使销售、市场营销和客户支持领域面向客户的员工能够快速做出明智的决策,从销售和交叉销售到提高与客户的沟通和响应质量,以及协调销售和市场营销活动的管理。平面文件
平面文件数据库以纯文本形式存储数据。在关系数据库中,平面文件由每行一条记录的表组成。记录中的不同列用逗号或制表符分隔,以分隔字段。区别在于平面文件数据库不包含多个表。存储在平面文件中的数据没有与其关联的文件夹或路径。平面文件在数据仓库项目中广泛用于导入数据。它们不会对存储的数据执行操作,但因为它们易于从服务器中携带数据,所以它们是首选。平面文件只是存储表信息的一种方式,其中包含的表之间没有任何关系。
与传统数据库相比,平面数据库更容易理解和设置,但如果它包含数百万项,则可能还不够。
ETL(提取转换加载)
ETL技术用于从源数据库中提取数据,转换和清理数据,并将其加载到目标数据库中。ETL是SET数据仓库技术的重要组成部分。其目的是整合分散、无序、不统一的数据,为企业决策提供分析依据。
ETL与移动数据的传统方法的主要区别在于它的易用性。用户友好的图形界面可用于在源数据库和目标数据库之间快速映射表和列。
日期仓库
数据仓库是一个数据管理系统,用于支持商业智能(BI)活动,尤其是分析。它仅用于执行查询和分析,通常包含大量历史数据。数据仓库中的数据通常来自广泛的来源,如应用程序、日志、文件和事务性应用程序。数据仓库集中和合并来自多个来源的大量数据。它的分析能力使企业能够从数据中获得有价值的业务洞察力,从而改进决策。随着时间的推移,它建立了一个对数据科学家和业务分析师来说非常宝贵的历史记录。由于这些功能,数据仓库可以被视为组织的“单一真相来源”。
数据集市
数据集市是数据仓库中数据的子集。数据集市是为特定的用户群体建立的。它们包含特定受众感兴趣的行和列的子集。数据集市还包含为分析组织内的特定部门或单位(如销售部门)而收集的聚合数据的存储库。通过向决策者提供数据仓库中的一小部分数据,可以实现隐私、性能和清晰性目标。
元数据
元数据是对数据仓库中其他数据的描述。它提供有关内容的信息。例如,图像可能包括描述图像大小、颜色深度、图像分辨率、创建图像时的分辨率以及其他数据的元数据。文本文档的元数据可以包含有关文档长度、作者、文档编写时间的信息,以及文档的简短摘要。摘要数据
摘要数据是创建高性能数据仓库的重要组成部分,该数据仓库以回答常见(或资源密集型)业务查询的方式存储聚合的数据。总结表是关于速度的。它们比事实表小,这意味着它们通常响应更快(需要查询的行更少),并且它们提供答案,而不必从头计算每个结果。
原始数据
原始数据是数据库中的用户数据,或终端用户通过使用各种数据存储,未经处理或简化的数据,这些数据可能是或可能不是机器可读的形式。它构成了物质存在的数据。原始数据可以以多种形式存在,例如文本数据、图像数据、音频数据或混合数据。
OLAP分析:(在线分析处理)
OLAP是一种快速软件技术,它可以共享多维信息,并解决特定问题的在线数据访问和分析。OLAP系统是数据仓库系统最重要的应用。它专门为支持复杂的分析操作而设计,侧重于为决策者和高级管理人员提供决策支持。它可以根据分析员的要求,快速灵活地处理大数据量的复杂查询处理,以直观易懂的形式向决策者提供查询结果,使决策者能够准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的计划。在一些国家,许多软件厂商采取开发前端产品的方式来弥补关系数据库管理系统支持的不足,公共应用逻辑统一分散,数据处理专业人员响应时间短。
报告系统
商业智能报告(BI reporting)是通过使用不同的软件和工具收集数据以获取相关见解的过程。最终,它提供关于商业趋势的建议和观察,使决策者能够采取行动。
数据挖掘
数据挖掘,又称数据库中的知识发现,是分析和发现海量数据的过程,可以帮助企业解决问题、降低风险、抓住新机遇。它的主要特点是对商业数据库中的大量商业数据进行提取、转换、分析和建模,提取关键知识以辅助商业决策。
商业智能有哪些不同类型?
汇报
报告的重点是准备包含基本信息的文件。这些报告告诉读者在特定环境下发生了什么,通常由报告作者自行决定报道时间。许多BI专业人士仍然依赖这些标准,该报告是长期商业智能软件的一部分。
2.分析
商业智能工具还包括用于分析的解决方案。这些分析平台不仅向公司展示其环境中发生的事情,还关注事情发生的原因。在许多情况下,数据本身是无用的。这些信息只有经过适当的分析并转化为公司可以使用的信息,才会有用。对商业智能技术的分析包括:可视化工具:创建易于理解的视觉效果并报告难以理解的原始数据的软件。特别报告:让企业有机会根据KPI和他们需要知道的特定数据查询从头开始开发软件。电子表格分析:对电子表格中包含的数据进行评估,以评估或预测特定单位或公司的绩效。
3.监测
监控也是商业智能环境的重要组成部分。有了许多商业智能解决方案,公司可以尽可能接近或实时获取信息。这为关键时刻提供了一个有趣的快照。商业智能系统包括以下监控服务:仪表盘:可以包含有用且可操作的数据指标的中央环境。信息可以图形化地显示在仪表板上,以便于读者理解。关键绩效指标:商业环境中的KPI衡量特定项目或行动的绩效,如投资回报。业务绩效管理:这些分析解决方案可以确保您为组织设定的目标已经实现,或者能够实现特定的结果。除了数据集成、报告、分析和监控之外,商业智能系统中的一些更现代的迭代也进入了通过商业分析(BA)进行“预测”的下一阶段。在人工智能和机器学习的时代,这可能会变得更加普遍。预测允许公司使用从商业智能和分析中收集的趋势和信息来预测未来几个月或几年可能发生的事情。然而,为了使BI领域的这个组成部分获得成功,公司必须精通数据挖掘和预测建模。
参考文献
Tableau,什么是美国商业情报?你的BI指南以及它的重要性?网址:https://www.tableau.com/learn/articles/business-intelligence[于2020年10月4日访问]
OLAP,什么是商业智能(BI)?网址:https://olap.com/learn-bi-olap/olap-bi-definitions/business-intelligence/[于2020年10月4日访问]大师99,什么是商业智能?定义和示例,可从以下网址获取:https://www.guru99.com/business-intelligence-definition-example.html#2[于2020年10月4日访问]Margaret Rouse,商业智能(BI)技术目标公司,网址:https://searchbusinessanalytics.techtarget.com/definition/business-intelligence-BI[访问日期:4/10/20]