利用预测模型对所有数据下一年份的数据进行预测代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# 假设这是公司的历史利润数据
years = np.array([2018, 2019, 2020, 2021, 2022])
profits = np.array([583.0, 656.0, 645.0, 555.0, 645.0])

# 将数据转换为DataFrame
data = pd.DataFrame({'Year': years, 'Profit': profits})

"""
数据收集:我们收集了公司过去几年的利润数据。
数据分析:我们首先进行了数据可视化,绘制了历史利润的散点图,以查看趋势。
模型选择:我们选择了线性回归模型,因为它适用于探索年份与利润之间的关系。
模型拟合:我们使用线性回归模型对历史数据进行拟合,找到了年份与利润之间的线性关系。
预测:通过模型预测了下一年的利润。
"""


# 创建线性回归模型
model = LinearRegression()

# 拟合模型
model.fit(data[['Year']], data['Profit'])

# 预测下一年的利润
next_year = 2023
predicted_profit = model.predict([[next_year]])
plt.rcParams['font.family'] = 'SimHei'
# 可视化历史数据和预测结果
plt.scatter(years, profits, label='历史数据')
plt.plot(next_year, predicted_profit[0], 'ro', label='预测利润')
plt.xlabel('年份')
plt.ylabel('利润(万元)')
plt.title('历史利润趋势及预测')
plt.legend()
plt.show()

print(f'Predicted Profit for {next_year}: {predicted_profit[0]}')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值