import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# 假设这是公司的历史利润数据
years = np.array([2018, 2019, 2020, 2021, 2022])
profits = np.array([583.0, 656.0, 645.0, 555.0, 645.0])
# 将数据转换为DataFrame
data = pd.DataFrame({'Year': years, 'Profit': profits})
"""
数据收集:我们收集了公司过去几年的利润数据。
数据分析:我们首先进行了数据可视化,绘制了历史利润的散点图,以查看趋势。
模型选择:我们选择了线性回归模型,因为它适用于探索年份与利润之间的关系。
模型拟合:我们使用线性回归模型对历史数据进行拟合,找到了年份与利润之间的线性关系。
预测:通过模型预测了下一年的利润。
"""
# 创建线性回归模型
model = LinearRegression()
# 拟合模型
model.fit(data[['Year']], data['Profit'])
# 预测下一年的利润
next_year = 2023
predicted_profit = model.predict([[next_year]])
plt.rcParams['font.family'] = 'SimHei'
# 可视化历史数据和预测结果
plt.scatter(years, profits, label='历史数据')
plt.plot(next_year, predicted_profit[0], 'ro', label='预测利润')
plt.xlabel('年份')
plt.ylabel('利润(万元)')
plt.title('历史利润趋势及预测')
plt.legend()
plt.show()
print(f'Predicted Profit for {next_year}: {predicted_profit[0]}')
利用预测模型对所有数据下一年份的数据进行预测代码
于 2023-08-14 11:48:15 首次发布