Merlion学习笔记
文章平均质量分 78
白鸟坠入密林
今日不知我是谁
展开
-
Merlion笔记(四):添加一个新的预测模型
将一个预测模型转换为异常检测模型是非常简单的。只需要在合适的目录下创建一个新文件,并定义包含一些基本头部的类结构。通过多重继承 ForecastingDetectorBase 类,大部分繁重的工作都可以自动处理。任何基于预测的异常检测器返回的异常评分,都是基于预测值与真实时间序列值之间的残差。# 定义一个配置类,该类按顺序继承自 RepeatRecentConfig 和 DetectorConfig# 设置一个默认的异常评分后处理规则# 默认的数据预处理变换是均值-方差归一化,原创 2024-10-25 10:12:42 · 483 阅读 · 0 评论 -
Merlion笔记(三):多变量时间序列预测
在许多情况下,通过提供这些变量的未来值以及过去值,我们可以获得更好的预测。这些变量可以是与目标变量相关的外部因素,通常可以提高模型的预测性能。在多变量时间序列预测中,可以将外生回归变量作为输入,帮助模型捕捉到更多的信息,从而改善预测结果。在这里,我们的任务是预测每周的销售额。我们希望我们的模型能够考虑可能影响消费者需求的变量(例如温度、消费者价格指数和失业率),因为对这些变量的了解可以提高销售预测的质量。在这里,我们先在训练数据上训练初始模型,然后使用滑动窗口的方法获取模型在训练数据上的预测结果。原创 2024-10-15 16:48:47 · 1199 阅读 · 0 评论 -
Merlion笔记(二):单变量时间预测
我们首先导入Merlion的TimeSeries类和M4数据集的数据加载器。然后,我们可以将该数据集中的特定时间序列划分为训练集和测试集。然后我们可以初始化并训练Merlion的DefaultForecaster,这是一个在性能与效率之间平衡的预测模型。我们还可以获得该模型在测试集上的预测结果。接下来,我们可视化模型的预测结果。最后,我们对模型进行定量评估。sMAPE用于衡量预测误差,范围为0到100(越低越好),而MSIS用于评估95%置信区间的质量,范围同样为0到100(越低越好)。和。原创 2024-10-14 21:14:36 · 746 阅读 · 0 评论 -
Merlion笔记(一):安装及基本使用
本笔记本将解释如何加载 CSV 文件以用于异常检测或预测。原创 2024-10-11 10:50:22 · 1075 阅读 · 0 评论 -
merlion的dashboard打开方法
【代码】merlion的dashboard打开方法。原创 2024-10-11 10:21:14 · 208 阅读 · 0 评论