
Python数学建模算法
文章平均质量分 59
JiaYu嵌入式
物联网工程、嵌入式工程师、嵌入式讲师、高校竞赛导师、高校毕设导师
展开
-
卷积神经网络(含案例代码)
卷积神经网络(Convolutional Neural Network,CNN)是一类专门用于处理具有网格结构数据的神经网络。它主要被设计用来识别和提取图像中的特征,但在许多其他领域也取得了成功,例如自然语言处理中的文本分类任务。CNN 的主要特点是它使用了卷积层(convolutional layer)来处理输入数据。卷积层通过卷积操作在输入数据上滑动一个或多个卷积核(也称为滤波器),从而学习局部特征。这种局部感知能力使得 CNN 能够有效地捕捉输入数据中的空间结构和模式。原创 2023-12-14 23:05:13 · 4257 阅读 · 0 评论 -
马尔科夫预测模型(超详细,案例代码)
马尔科夫预测模型是一种基于马尔科夫过程的预测方法。马尔科夫过程是一类具有马尔科夫性质的随机过程,即未来的状态只依赖于当前状态,而与过去状态无关。这种过程通常用状态空间和状态转移概率矩阵来描述。在马尔科夫预测模型中,系统被建模为处于一系列离散状态之一的马尔科夫链。每个状态表示系统可能的一个状态或情境,状态之间的转移由概率矩阵定义。这个概率矩阵描述了系统从一个状态转移到另一个状态的可能性。马尔科夫预测模型的基本思想是利用已知的状态序列来预测未来状态。原创 2023-12-14 22:29:21 · 13427 阅读 · 0 评论 -
K-means聚类模型(超详细,含案例代码)
K-means是一种常用的聚类算法,用于将数据集中的观测点分为不同的群组或簇。聚类是一种无监督学习方法,其目标是发现数据中隐藏的结构,将相似的数据点划分为同一组,同时将不相似的数据点划分为不同的组。原创 2023-12-12 20:27:06 · 36681 阅读 · 0 评论 -
支持向量机模型(超详细,含案例代码)
支持向量机(Support Vector Machine,SVM)是一种在机器学习领域中用于分类和回归分析的强大算法。它是一种监督学习算法,其目标是在特征空间中找到一个超平面,将不同类别的数据点分开,同时最大化分类边界的间隔。SVM 的基本思想是找到能够有效划分数据的超平面,即在高维空间中的一个(d-1)维子空间,其中 d 是特征的数量。为了找到这个最佳的超平面,SVM 使用支持向量,即离超平面最近的一些数据点。这些支持向量决定了超平面的位置和方向。原创 2023-12-12 19:50:29 · 14728 阅读 · 0 评论 -
随机森林分类模型(python案例代码)
随机森林(Random Forest)是一种集成学习方法,常用于分类和回归问题。它通过构建多个决策树来进行预测,然后通过取这些树的输出的平均值(回归问题)或投票(分类问题)来提高模型的准确性和鲁棒性。随机森林具有很强的泛化能力,对于复杂的数据集和高维特征空间也表现良好。原创 2023-12-11 20:03:10 · 11184 阅读 · 0 评论 -
智能优化算法之粒子群模型(含python案例代码)
粒子群优化模型概述粒子群优化(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,最早由美国社会心理学家和于1995年提出。PSO的灵感来自鸟群和鱼群等自然界群体行为的观察。PSO的基本思想是通过模拟群体中个体的协作和信息共享来寻找问题的最优解。在PSO中,个体被称为“粒子”,每个粒子代表搜索空间中的一个潜在解。这些粒子通过在搜索空间中移动来寻找最优解,其移动的方向和速度受到个体经验和群体经验的影响。PSO的基本模型。原创 2023-12-11 19:36:15 · 2983 阅读 · 0 评论 -
程序员必备算法(详细)
作为程序员,有几种算法是非常重要的,无论你从事什么领域的开发。以下是一些程序员应该掌握的基本算法:排序算法:了解不同类型的排序算法,如冒泡排序、插入排序、选择排序、快速排序、归并排序等。这些算法对于处理和组织数据非常重要。搜索算法:掌握基本的搜索算法,如线性搜索、二分搜索和广度优先搜索。搜索算法用于在数据集中查找特定元素或满足某些条件的元素。原创 2023-07-06 23:17:10 · 1696 阅读 · 0 评论 -
最短路径算法(Python数学建模)
最短路径算法是一种用于计算图中两个节点之间最短路径的算法。在图论中,最短路径通常指的是图中连接两个节点的路径中具有最小权重(或成本)的路径。以下是两种常见的最短路径算法:Dijkstra算法:Dijkstra算法是一种用于在带权有向图中找到从源节点到所有其他节点的最短路径的算法。它通过不断选择当前距离最短的节点,并更新与该节点相邻节点的距离,逐步构建最短路径树。Dijkstra算法适用于没有负权边的图,时间复杂度为O(V^2),其中V是图中节点的数量。原创 2023-06-25 14:56:26 · 3497 阅读 · 0 评论 -
【Python数学建模常用算法代码——动态规划模型】
不会用可以对照原理理解,或者去百度。我只是给大家敲代码的步骤而已。算法代码就在下方,大家可以改改,或者套着用。原创 2023-04-30 08:34:20 · 723 阅读 · 0 评论 -
【Python数学建模常用算法代码——逻辑回归模型】
链接: https://pan.baidu.com/s/1OqT0nV35lPsRH0HvPgm83g。也可以私聊我拿测试数据。原创 2023-04-30 08:26:38 · 293 阅读 · 0 评论 -
【Python数学建模常用算法代码——蒙特卡洛模型】
蒙特卡洛方法的理论支撑其实是概率论或统计学中的大数定律。基本原理简单描述是先大量模拟,然后计算一个事件发生的次数,再通过这个发生次数除以总模拟次数,得到想要的结果。下面我们以三个经典的小实验来学习下蒙特卡洛算法思想。原创 2023-04-30 08:16:21 · 1871 阅读 · 0 评论 -
【Python数学建模常用算法代码——拟合模型】
只要给出具体的函数形式(可以是任意的,只要能写的出来皆可),用最小二乘的方式去逼近和拟合,即求出函数的各项系数。其中需要关注的参数为3个:x、y分别为需要拟合的散点的坐标序列,deg为需要拟合的多项式的最高项数。如果需要进行多项式拟合,你必须大体上知道散点的大致曲线形式,大致的函数的形式。由泰勒公式知道:任何一个函数都可以拆分成近似于这个函数的多项式表达。原创 2023-04-30 08:05:24 · 709 阅读 · 0 评论 -
【Python数学建模常用算法代码(十)之主成分分析】
废话就不多说了,直接上代码。原创 2023-04-30 07:53:03 · 197 阅读 · 1 评论 -
【Python数学建模常用算法代码(九)之层次分析法】
层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。原创 2023-03-28 22:42:46 · 889 阅读 · 0 评论 -
【Python数学建模常用算法代码(八)之多目标模糊综合评价模型】
代码有注释,请先搞清楚什么叫多目标模糊综合评价模型。原创 2023-02-15 20:59:46 · 746 阅读 · 0 评论 -
【Python数学建模常用算法代码(七)之TOPSIS综合评价模型代码】
不喜欢说废话,直接上代码!原创 2023-02-15 20:53:19 · 258 阅读 · 0 评论 -
2023年美国大学生数学建模时间、分析及算法代码
报名截止日期:美国东部时间2023 年2月16日星期四下午 3:00前。(北京时间2023年2月17日凌晨4点)比赛开始:美国东部时间 2023 年 2 月 16 日星期四下午 5:00。(北京时间2023年2月17日早上6点)比赛结束:美国东部时间 2023 年 2 月 20 日星期一晚上 8:00。(北京时间2023年2月21日上午9点)解决方案报告截止日期:美国东部时间 2023 年 2 月 20 日星期一晚上 9:00。(北京时间2023年2月21日上午10点)原创 2023-02-11 11:51:40 · 3156 阅读 · 7 评论 -
【Python数学建模常用算法代码(六)之灰色预测模型】
注意!注意!注意:Python数学建模常用算法代码就更新到这里!!!后面会看心情不定时更新数学建模知识废话不多说,灰色预测来一波!!原创 2022-11-29 12:02:35 · 1534 阅读 · 0 评论 -
【Python数学建模常用算法代码(五)之模拟退火】
【代码】【Python数学建模常用算法代码(五)之模拟退火】原创 2022-09-12 13:00:48 · 449 阅读 · 0 评论 -
【Python数学建模常用算法代码(四)之卷积神经网络】
【代码】【Python数学建模常用算法代码(四)之卷积神经网络】原创 2022-09-12 12:57:56 · 4037 阅读 · 0 评论 -
【Python数学建模常用算法代码(三)之遗传算法】
Python数学建模常用算法代码(三)原创 2022-09-12 12:52:28 · 515 阅读 · 0 评论 -
【Python数学建模常用算法代码(二)之BP神经网络】
BP神经网络(Back Propagation Neural Network,BPNN)是人工神经网络的一种,通过误差反向传播算法来训练。BP神经网络由输入层、隐藏层和输出层组成,其中每一层包含多个神经元。BP神经网络广泛应用于分类、回归、模式识别和时间序列预测等领域。原创 2022-09-12 12:45:29 · 1425 阅读 · 0 评论 -
【Python数学建模常用算法代码(一)之ARIMA时间序列预测模型】
ARIMA (AutoRegressive Integrated Moving Average) 模型是一种广泛用于时间序列数据分析和预测的统计模型。ARIMA 模型结合了自回归 (AR) 和移动平均 (MA) 模型,并且可以处理非平稳时间序列数据,通过差分操作来使其平稳。ARIMA 模型的三个主要参数是 ( p ), ( d ), 和 ( q )。原创 2022-09-12 12:40:27 · 5561 阅读 · 7 评论