Java高级工程师进阶学习,系列篇

本文深入探讨了二叉树、二分查找及其在Java开发中的应用,包括二叉查找树和平衡二叉树的概念,强调了在实际项目中如何利用这些数据结构提高查询效率。此外,还提及了B-tree在多叉树基础上提高查找性能的优势。适合Java中级程序员阅读,以提升面试和工作中的技术能力。
摘要由CSDN通过智能技术生成

前言

消息中间件是分布式系统中的重要组件,在实际工作中常用消息中间件进行系统间数据交换,从而解决应用解耦、异步消息、流量削峰等问题,实现高性能、高可用、可伸缩和最终一致性架构。目前市面上可供选择的消息中间件有RabbitMQ、ActiveMQ、 Kafka、 RocketMQ、ZeroMQ、MetaMQ等。

本文总结了近年来在实际项目中使用消息中间件的经历和踩过的一些坑,可为你**在实际工作中进行产品选型、业务场景方案制定、性能调整等提供明确的思路。**由于是基于Java语言开发,因此它非常适合Java初中级程序员阅读,学习。

正文

二叉树

由 n( n > 0)个有限节点组成一个具有层次关系的集合,看起来就像一个倒挂的树,因此称这样的数据结构为树。

一个节点的子节点个数叫做度,通俗的讲就是树叉的个数。树中最大的度叫做树的度,也叫做阶。一个 2 阶树最多有 2 个子节点即最多有 2 叉,因此这样的树称为二叉树,二叉树是树家族中最简单的树。

image.png

两个叉的树就是二叉树,可这除了用来按一定结构存放数据外,跟查询性能好像也没关系,不会又是一个没用的噱头吧。

二分查找

听说二叉树的原始威力来源于一种叫做二分查找的算法。

相传在鹦鹉的原始社会,存在着森严的等级制度,每只鸟必须按高矮顺序分出等级和尊卑。

那么问题来了,如下图,怎样才能找出最高、最矮、中等高的那些鹦鹉呢、以及指定高度的那只呢?

image

第一种方法: 扫描法

一个一个依次测量,完毕后所有的问题都迎刃而解。

这种一个一个依次全部测量的方法叫做扫描,他的缺点很明显,最高和最矮,需要全部测量完毕才能知晓。

而对于指定高度,最好的情况是第一次就找到;最坏的情况是最后一次才找到,时间复杂度为 n,也就是说从 13 个鹦鹉中找到指定身高的那只,最坏的情况是查 13 次。

第二种方法:二分法

13 个鹦鹉全部听令,按从矮到高列队,向左看齐,报数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值