K倍区间-前缀和进阶

给定一个长度为 N 的数列, A 1 , A 2 , … A N A_1,A_2,…A_N A1,A2,AN,如果其中一段连续的子序列 A i , A i + 1 , … A j A_i,A_{i+1},…A_j Ai,Ai+1,Aj 之和是 K 的倍数,我们就称这个区间 [i,j] 是 K 倍区间。

你能求出数列中总共有多少个 K 倍区间吗?

输入格式
第一行包含两个整数 N 和 K。

以下 N 行每行包含一个整数 Ai。

输出格式
输出一个整数,代表 K 倍区间的数目。

数据范围
1≤N,K≤100000,
1≤ A i A_i Ai≤100000
输入样例

5 2
1
2
3
4
5

输出样例

6

优化思路

  1. 最先想到的是暴力求解:两重循环,遍历所有的组合情况,再区间求和。此时的时间复杂度 O ( n 3 ) O(n^3) O(n3)远大于 1 0 8 10^8 108
  2. 下一步优化:区间求和可以用前缀和来优化:全局[L, R]上的和为sum[R]-sum[L-1],此时算法优化到了 O ( n 2 ) O(n^2) O(n2)
  3. 再进一步优化:我们发现第二层循环的功能就是统计在 j j j之前,有多少个符合条件的位置 i i i,使得区间[i, j]上的和是k的倍数,即可得以下关系:
    ( s [ j ] − s [ i − 1 ] )    m o d    k = 0 s [ j ]    m o d    k = s [ i − 1 ]    m o d    k (s[j]-s[i-1])\,\,mod\,\,k=0 \\ s[j]\,\,mod\,\,k=s[i-1]\,\,mod\,\,k (s[j]s[i1])modk=0s[j]modk=s[i1]modk
    即就是求有多少对 s [ ] s[] s[]除以k的余数是相同的
    放在整体来看,答案就是在[1,n]的区间上,有多少对 s [ ] s[] s[]除以k的余数相同,注意这里当i=1时,会有 s [ 0 ] s[0] s[0]的出现, s [ 0 ] s[0] s[0]的值就是0(可以理解是数列中单独一个数求和的情况),这是一开始就存在的,所以在计数之前,要初始化cnt[0]=1(cnt[x]时指余数为x有多少对)(不理解的话请看完代码后看下面的解释)

代码

#include <iostream>
using namespace std;

const int N = 1e5+5;
int sum[N];
long long cnt[N];
int n,k,a;
long long res;

int main()
{
    cin>>n>>k;
    cnt[0]=1;
    for(int i=1; i<=n; i++)
    {
        cin>>a;
        sum[i] = (sum[i-1]+a)%k;
        res += cnt[sum[i]];
        cnt[sum[i]]++;
    }      
    cout<<res;
}
		res += cnt[sum[i]];
        cnt[sum[i]]++;

这两句代码其实就是数学公式 C n 2 C_n^2 Cn2的过程:
C n 2 = n × ( n − 1 ) 2 = 1 + 2 + 3 + . . . + n − 1 C_n^2=\frac{n\times(n-1)}{2}=1+2+3+...+n-1 Cn2=2n×(n1)=1+2+3+...+n1
比如在求余数为1的对数时,在i=1时余数为1,此时res+=cnt[1]=0,cnt[1]++,在i=3的时候发现余数也为1,此时sum[3-1-1]满足k倍区间,所以res+=cnt[1]=1,,cnt[1]++;在i=5时发现余数也为1,此时是不是sum[5-3-1]满足k倍区间,sum[5-1-1]也满足k倍区间(两两组合),所以res+=cnt[1]=1+2=3…依次类推整个过程就是高中所学的 C n 2 C_n^2 Cn2

如果你不理解为什么cnt[0]=1,可以按照上述流程模拟余数为0的时候,可以发现余数不为0的时候,需要最少有两个这种区间才能组合一起计一个k倍区间,而余数为0的,其自己本身就是k倍区间,和别人组合也是k倍区间,所以一开始要初始化,不然就少了组合
如果还不理解,也可以不初始化,在最后给res加上所有单独一个数就满足k倍的个数

代码

#include <iostream>
using namespace std;

const int N = 1e5+5;
int sum[N];
long long cnt[N];
int n,k,a;
long long res;

int main()
{
    cin>>n>>k;
    cnt[0]=1;
    for(int i=1; i<=n; i++)
    {
        cin>>a;
        sum[i] = (sum[i-1]+a)%k;
        cnt[sum[i]]++;
    }
    
    for(int i=0; i<k; i++)
        res += (cnt[i]*(cnt[i]-1)/2);
    cout<<res;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linengcs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值