- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 多视角聚类论文笔记(三)SC^2-Net
大多数基于子空间的多视图聚类方法现在都侧重于探索与多视图数据集相关的一致性或互补性特征之一,而不是平衡它们的探索。与此同时,人们青睐的结合深度学习的方法往往是将网络结构设计得相对复杂,然后叠加多个损失函数的约束。此外,未标记数据集的训练结果往往不令人满意。SC2 -Net学习了多视图互补表示和视图之间的一致性融合,遵循了MVC的两个原则。聚类标签将通过与𝑘-means合作获得,整体结构简单而高效。此外,我们使用两个自监督损失函数来监督网络训练,使训练过程免于使用带有注释的数据。
2024-05-22 12:03:30 479
原创 多视角聚类论文笔记(二)Multi-level Feature Learning for Contrastive Multi-view Clustering(MFLVC)
现有的MVC工作在同一个特征空间中惩罚多个目标,他们忽略了学习一致的公共语义和重建不一致的视图私有信息之间的冲突。本文以不融合的方式从原始特征中学习不同层次的特征,包括低级特征、高级特征和语义标签/特征,从而有效地实现不同特征空间的重建目标和一致性目标。具体来说,重建目标是在底层特征上进行的。基于对比学习的两个一致性目标分别在高级特征和语义标签上进行。它们使高级特征有效地挖掘公共语义,使语义标签实现多视图聚类。因此,所提出的框架可以减少视图私有信息的不利影响。
2024-05-10 10:58:19 1194
原创 多视角聚类论文笔记(一)Partial Multi-View Clustering via Self-Supervised Network(PVC-SSN)【不完全多视角聚类】
利用深度多视角对比编码器网络来减少潜在子空间的差异,通过最大化多个视角之间的一致性来实现;设计多视角编码器网络来重构原始数据样本,确保子空间表示的有效性;在潜在子空间表示中,嵌入自表达层来学习一致子空间表示;paired data(不存在缺失样本的视角集合);unpaired data(存在确实样本的视角集合)
2024-04-10 22:33:10 716
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人