yolov8 一条龙教程-------模型训练(实例分割为例子)

yolov8(实例分割)

  • Step1.解读官方给的数据

网址:https://ultralytics.com/assets/coco8-seg.zip
下载后发现,
data是img,
在这里插入图片描述
label是txt文件,
在这里插入图片描述
请注意,该txt文件只有两行,每一行所代表的是一个实例的轮廓坐标。并且每一行的开头是一个整数,如图所示是58,75,我们可以通过
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml知道,58代表的是potted plant ,75代表的是vase
并且我们还可以通过txt文件中的坐标来画出轮廓。
https://codeantenna.com/a/vHkNF4TM2G)有兴趣可以参考。

  • Step2.制作自己的数据集

此处可以使用官方推荐的一个网站https://universe.roboflow.com/
进入选择instance-segmentation类的数据集,随便下载一种,试试水。
在这里插入图片描述
选择这个下载(都可以)下载后解压缩。
在这创建一个文件夹(mydata)。并将下载好的数据集放入mydata中。
在这里插入图片描述
在这里插入图片描述

  • step3修改配置文件

将修改位置1处的全部删除,修改为
在这里插入图片描述在这里插入图片描述

(原因:因为所下载的数据集只有一个类别。可以根据所下载的数据集中附带的data.yaml知道,如果你要训练自己的数据集,那么有几类就有一个。)

将修改位置2处的路径换成mydata下数据集的绝对路径,如图所示
在这里插入图片描述
在这里插入图片描述

以上配置文件修改完成

  • step4下载模型,开始train

https://docs.ultralytics.com/tasks/segment/#models,进入选择一个seg模型,并将其下载好后放入文件夹内。
在这里插入图片描述
我是放了下图这个位置,放哪里都可以。
在这里插入图片描述
在文件夹根目录下创建一个.py文件,用来进行训练的。
复制以下代码放到该.py文件中,
在这里插入图片描述
在这里插入图片描述
修改上述文件全部为绝对路径。
在这里插入图片描述
如果报错,说明batch_size大了,
在这里插入图片描述
修改
在这里插入图片描述
将batch_size改小点。继续train。
如果出现这个,训练ok。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值