文章目录
LeetCode 392.判断子序列
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。
进阶:
如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?
示例 1:
输入:s = "abc", t = "ahbgdc"
输出:true
示例 2:
输入:s = "axc", t = "ahbgdc"
输出:false
双指针
class Solution {
public boolean isSubsequence(String s, String t) {
int m = s.length();
int n = t.length();
int i = 0, j=0;
while(i<m&&j<n){
if(s.charAt(i)==t.charAt(j)){
i++;
j++;
}else{
j++;
}
}
return i==m;
}
}
动态规划
public boolean isSubsequence(String s, String t) {
int length1 = s.length(); int length2 = t.length();
int[][] dp = new int[length1+1][length2+1];
for(int i = 1; i <= length1; i++){
for(int j = 1; j <= length2; j++){
if(s.charAt(i-1) == t.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = dp[i][j-1];
}
}
}
if(dp[length1][length2] == length1){
return true;
}else{
return false;
}
}
LeetCode 115.不同的子序列(困难)
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
题目数据保证答案符合 32 位带符号整数范围。
示例 1:
输入:s = "rabbbit", t = "rabbit"
输出:3
解释:
如下图所示, 有 3 种可以从 s 中得到 "rabbit" 的方案。
rabbbit
rabbbit
rabbbit
示例 2:
输入:s = "babgbag", t = "bag"
输出:5
解释:
如下图所示, 有 5 种可以从 s 中得到 "bag" 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag
class Solution {
public int numDistinct(String s, String t) {
int m = s.length(), n = t.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; i++)
dp[i][0] = 1;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (j > i)
continue;
if (s.charAt(i - 1) == t.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[m][n];
}
}
LeetCode 53.最大子序和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
贪心
class Solution {
public int maxSubArray(int[] nums) {
int result = Integer.MIN_VALUE;
int count = 0;
for(int i = 0;i<nums.length;i++){
count+=nums[i];
if(count>result){
result = count;
}
if(count <=0){
count =0;
}
}
return result;
}
}
动态规划
class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
dp[0] = nums[0];
int ans = dp[0];
for(int i = 1; i < len; i++) {
dp[i] = Math.max(nums[i],dp[i-1] + nums[i]);
ans = Math.max(ans,dp[i]);
}
return ans;
}
}
LeetCode 300.最长上升子序列的长度
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
动态规划
class Solution {
public int lengthOfLIS(int[] nums) {
int len = nums.length;
if(len < 2) return len;
int[] dp = new int[len];//以i为结尾的最长递增子序列的长度
int ans = 0;
Arrays.fill(dp, 1);
for(int i = 0; i < len; i++) {
for(int j = 0; j < i; j++) {
if(nums[j] < nums[i]) {//如果这个数小于这段的数,那么有递增子序列
if(dp[j] >= dp[i]) {
dp[i] = dp[j] + 1;
}
}
ans = Math.max(dp[i], ans);
}
}
return ans;
}
}
二分查找法
class Solution {
public int lengthOfLIS(int[] nums) {
int ans = 0;
int len = nums.length;
int[] dp = new int[len];
for(int i = 0; i < len; i++) {
int sit = Arrays.binarySearch(dp,0,ans,nums[i]);//找到比nums[i]大的元素的位置
sit = sit < 0 ? - sit - 1:sit;
dp[sit] = nums[i];//替换第一个比他大的位置
if(sit == ans) {//如果正好比子序列中所有的数都大,那么最长递增子序列长度增一
ans++;
}
}
return ans;
}
}
LeetCode 673.最长递增子序列的个数
给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。
注意:这个数列必须是严格递增的。
示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5
class Solution {
public int findNumberOfLIS(int[] nums) {
int len = nums.length;
if(len < 2) return len;
int[] lengths = new int[len];//递增子序列的几种情况
int[] dp = new int[len];//每种递增子序列的个数
Arrays.fill(dp,1);
for(int i = 0; i < len; i++) {
for(int j = 0; j < i; j++) {
if(nums[j] < nums[i]) {
if(lengths[j] >= lengths[i]) {
lengths[i] = lengths[j] + 1;
dp[i] = dp[j];
}else if(lengths[j] + 1 == lengths[i]) {
dp[i] += dp[j];
}
}
}
}
int lengest = 0, ans = 0;
for(int length : lengths) {
lengest = Math.max(lengest,length);
}
for(int i = 0; i < len; i++) {
if(lengths[i] == lengest) {
ans += dp[i];
}
}
return ans;
}
}
LeetCode 674.最长连续递增子序列的长度
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
暴力求解
class Solution {
public int findLengthOfLCIS(int[] nums) {
int len = nums.length;
int ans = 1;
int max = ans;
for (int i = 0; i < len - 1; i++) {
if (nums[i+1] <= nums[i]) max = 0;
ans = Math.max(++max, ans);
}
return ans;
}
}
动态规划
//版本一
class Solution {
public int findLengthOfLCIS(int[] nums) {
int n = nums.length;
int[] dp = new int[n+1];
Arrays.fill(dp,1);
for(int i = 1;i<n;i++){
if(nums[i]>nums[i-1])
dp[i] = Math.max(dp[i],dp[i-1]+1);
}
int max = 1;
for(int num:dp){
max = Math.max(max,num);
}
return max;
}
}
//优化
class Solution {
public int findLengthOfLCIS(int[] nums) {
int n = nums.length;
int[] dp = new int[n+1];
Arrays.fill(dp,1);
int res = 1;
for(int i = 1;i<n;i++){
if(nums[i]>nums[i-1])
dp[i] = dp[i-1]+1;
if(dp[i]>res) res = dp[i];
}
return res;
}
}
LeetCode 1218.最长定差子序列
给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference 。
子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。
示例 1:
输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。
class Solution {
public int longestSubsequence(int[] arr, int difference) {
int ans = 1;
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for(int i = 0; i < arr.length; i++) {
int temp = map.getOrDefault(arr[i]-difference, 0) + 1;//表示之前出现过等差子序列
map.put(arr[i], temp);//新的长度
ans = Math.max(ans, temp);
}
return ans;
}
}
LeetCode 1143.最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m=text1.length();
int n=text2.length();
int[][] dp=new int[m+1][n+1];
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(text1.charAt(i-1)==text2.charAt(j-1))
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[m][n];
}
}
LeetCode 718.最长重复子数组
给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。
示例 1:
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。
示例 2:
输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5
1.确定dp数组(dp table)以及下标的含义
dp[i] [j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i] [j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
此时细心的同学应该发现,那dp[0] [0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。
其实dp[i] [j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。
那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?
行倒是行! 但实现起来就麻烦一点,大家看下面的dp数组状态图就明白了。
2.确定递推公式
根据dp[i] [j]的定义,dp[i] [j]的状态只能由dp[i - 1] [j - 1]推导出来。
即当A[i - 1] 和B[j - 1]相等的时候,dp[i] [j] = dp[i - 1] [j - 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
3.dp数组如何初始化
根据dp[i][j]的定义,dp[i] [0] 和dp[0] [j]其实都是没有意义的!
但dp[i] [0] 和dp[0] [j]要初始值,因为 为了方便递归公式dp[i] [j] = dp[i - 1] [j - 1] + 1;
所以dp[i] [0] 和dp[0 ][j]初始化为0。
//版本1
class Solution {
public int findLength(int[] A, int[] B) {
int len1 = A.length;
int len2 = B.length;
int[][] dp = new int[len1+1][len2+1];
//初始化
for(int i = 0; i < len1; i++) {
dp[i][0] = 0;
}
for(int j = 0; j < len2; j++) {
dp[0][j] = 0;
}
int ans = 0;
//找出最长公共子数组
for(int i = 1; i <= len1; i++) {
for(int j = 1; j <= len2; j++) {
if(A[i-1] == B[j-1]) {
dp[i][j] = dp[i-1][j-1] + 1;
}else {
dp[i][j] = 0;
}
ans = Math.max(dp[i][j], ans);
}
}
return ans;
}
}
//版本2
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int result = 0;
int[][] dp = new int[nums1.length + 1][nums2.length + 1];
for (int i = 1; i < nums1.length + 1; i++) {
for (int j = 1; j < nums2.length + 1; j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
result = Math.max(result, dp[i][j]);
}
}
}
return result;
}
}
LeetCode 516.最长回文子序列 返回长度
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
示例 2:
输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。
提示:
1 <= s.length <= 1000
s 仅由小写英文字母组成
//版本1
class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
if(len <= 1) return len;
int[][] dp = new int[len+1][len+1];
for(int i = 0; i < len; i++) {
dp[i][i] = 0;
}
char[] c = new char[len];
int k = 0;
for(int i = len-1; i >= 0; i--) {
c[k++] = s.charAt(i);
}
for(int i = 1; i <= len; i++) {
for(int j = 1; j <= len; j++) {
if(c[j-1] == s.charAt(i-1)) {
dp[i][j] = dp[i-1][j-1] + 1;
}else {
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
}
return dp[len][len];
}
}
//版本2
/*
**1.确定dp数组(dp table)以及下标的含义**
dp[i] [j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i] [j]。
**2.确定递推公式**
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i] [j] = dp[i + 1] [j - 1] + 2;
*/
class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len + 1][len + 1];
for (int i = len - 1; i >= 0; i--) { // 从后往前遍历 保证情况不漏
dp[i][i] = 1; // 初始化
for (int j = i + 1; j < len; j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], Math.max(dp[i][j], dp[i][j - 1]));
}
}
}
return dp[0][len - 1];
}
}
LeetCode 5.最长回文子串
给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
暴力枚举
public String longestPalindrome(String s) {
String res = "";
for(int i = 0; i < s.length(); i++) {
// 最长回文子串是奇数时
String s_odd = palindrome(s, i-1, i+1);
// 最长回文子串是偶数时
String s_even = palindrome(s, i, i + 1);
// 比较以i开始扩散,最长回文子串是奇数和偶数,哪个更长
String curr = s_odd.length() > s_even.length() ? s_odd : s_even;
// 更新最长的文子串
if(curr.length() > res.length()) res = curr;
}
return res;
}
private String palindrome(String s, int l, int r) {
while(l >= 0 && r < s.length()) {
// 向两端扩散,找最长回文子串
if(s.charAt(l) == s.charAt(r)) {
l--;
r++;
}else break;
}
// 找到以l和r开始的最长回文子串并返回
return s.substring(l + 1, r);
}
动态规划
//版本1
class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if(s == null || len < 1) return s;
int[][] dp = new int[len][len];
String ans = "";
int r = 1;
int l = 0;
String t = "";
for(int i = 1; i < len; i++) {
dp[i][i] = 1;
for(int j = 0; j < i; j++) {
if(s.charAt(i) == s.charAt(j)) {
if(i - j < 3) {
dp[j][i] = 1;
}else {
dp[j][i] = dp[j + 1][i - 1];
}
}else {
dp[j][i] = 0;
}
if(dp[j][i] == 1) {
int temp = i - j + 1;
if(temp > r) {
r = temp;
l = j;
}
}
}
}
return s.substring(l,r+l);
}
}
//版本2
class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if(len == 1) {
return s;
}
int maxLen = 1;
int start = 0;
boolean[][] dp = new boolean[len][len];
for(int j = 1; j < len; j++) {
for(int i = 0; i < j; i++) {
if(s.charAt(i) != s.charAt(j)) { // 两边字符不同
dp[i][j] = false; // 必不是回文子串
} else { // 两边字符相同
if(j - i < 3){ // 子串长度为2或3
dp[i][j] = true; // 必为回文子串
} else { // 子串长度大于3
dp[i][j] = dp[i+1][j-1]; // 与其之前的子串相关
}
}
if(dp[i][j] && (j-i+1 > maxLen)) {
maxLen = j - i + 1;
start = i;
}
}
}
return s.substring(start, start + maxLen);
}
LeetCode 1027.最长等差数列
给你一个整数数组 nums,返回 nums 中最长等差子序列的长度。
回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。
示例 1:
输入:nums = [3,6,9,12]
输出:4
解释:
整个数组是公差为 3 的等差数列。
示例 2:
输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。
示例 3:
输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
暴力枚举
class Solution {
public int longestArithSeqLength(int[] nums) {
//暴力枚举 每两个的值
int len=nums.length;int max=2;int max1=2;
for(int i=0;i<len;i++){
for(int j=i+1;j<len;j++){
int k=nums[i]-nums[j];int left=nums[j];
for(int x=j+1;x<len;x++){
if(left==nums[x]+k){
max++;
left=nums[x];
if(max>max1)max1=max;
}
}
max=2;
}
}
return max1;
}
}
动态规划
class Solution {
public int longestArithSeqLength(int[] nums) {
//该dp[i][j]表示的含义为以索引i结尾的元素 公差为j的最大索引长度
//考虑到公差可能为负数且数据范围为[0,500] 即公差范围为[-500,500]所以在每个公差之前加上500保证为整数
int [][]dp = new int[nums.length][1001];
int ans = 1;
for(int i = 0; i < nums.length; i++)
{
for(int j = 0; j < i; j++)
{
int dif = nums[i] - nums[j] + 500;//表示的是以i为倒数第一个数 j为倒数第二个数的等差数列的公差
dp[i][dif] = Math.max(dp[i][dif],dp[j][dif] + 1);
ans = Math.max(ans,dp[i][dif]);
}
}
return ans + 1;
}
}
LeetCode 873.最长的斐波那契子序列的长度
如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:
n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
示例 1:
输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。
示例 2:
输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。
提示:
3 <= arr.length <= 1000
1 <= arr[i] < arr[i + 1] <= 10^9
//版本1
class Solution {
public int lenLongestFibSubseq(int[] A) {
int len = A.length;
if(len <= 2) return len;
int[][] dp = new int[len][len];//dp以A[i]为最后一个数的最长斐波拉契子序列的长度
for(int i = 0; i < len; i++) {
Arrays.fill(dp[i], 2);//初始化
}
int ans = 0;
//从前面的数组中选两个元素,如果相等就长度增一
int l = 0;
int r = 0;
for(int i = 1; i < len; i++) {
r = i - 1;
l = 0;
while(l < r) {
int sum = A[l] + A[r];
if(sum == A[i]) {
dp[r][i] = Math.max(dp[r][i], dp[l][r] + 1);
ans = Math.max(ans, dp[r][i]);
l++;
r--;
}else if(sum < A[i]){
l++;
}else {
r--;
}
}
}
return ans;
}
}
//版本2
class Solution {
public int lenLongestFibSubseq(int[] A) {
//从i开始,下一个是j
int max = 2;
for(int i = 0; i < A.length; i++){
for(int j = i + 1; j < A.length; j++){
int tmpI = A[i];
int tmpJ = A[j];
int sum = tmpI + tmpJ;
int cur = 2;
//存在
while(Arrays.binarySearch(A, sum) >= 0){
tmpI = tmpJ;
tmpJ = sum;
sum = tmpI + tmpJ;
cur++;
}
max = Math.max(max, cur);
}
}
return max < 3 ? 0 : max;
}
}