图像修复
文章平均质量分 59
axianera
这个作者很懒,什么都没留下…
展开
-
LeetCode 每日一题题解: 1768. 交替合并字符串
【代码】LeetCode 每日一题题解: 1768. 交替合并字符串。原创 2022-10-23 16:18:55 · 393 阅读 · 0 评论 -
《Globally and locally consistent image completion》图像修复论文解读
作者在context encoder的基础上进行改进,整个网络由一个修复网络和两个鉴别网络(全局鉴别网络和局部鉴别网络)组成。修复网络用来对进入其中的图像进行修复,而鉴别网络用来对图像进行判别。鉴别网络的目标是尽可能准确地分类修复出来的图像和ground truth,而修复网络则是尽可能地去愚弄鉴别网络,即要提升修复质量,使得鉴别网络无法准确地分辨修复出来的图像与ground truth。修复网络与鉴别网络组成了生成对抗性网络,以此来提高图像修复质量。 一张ground tru...原创 2022-03-25 15:23:08 · 3975 阅读 · 1 评论 -
《Contextual-based Image Inpainting: Infer,Match,and Translate》图像修复论文解读
将修复任务分为了两个独立部分,推断和翻译。每一个部分都有一个独立的神经网络,作者利用简单的启发式算法将缺失区域边缘处的纹理信息向缺失区域内部扩散。作者的修复模型更易于训练,且达到了较好的修复效果。 修复过程:分为两个阶段:推理和翻译。在推理阶段,训练一个image2 feature网络,用粗略预测初始化洞并提取它的特征。预测是模糊的,但在洞中包含高级结构信息。在翻译阶段,训练了Feature2image网络,将该特征转换回完整的图像。它可以细化孔中的内容并输出具有清晰逼真纹理...原创 2022-03-25 15:15:28 · 3146 阅读 · 0 评论 -
《Context Encoders: Feature Learning by Inpainting》 opencv图像修复Image Inpating论文解读
基于上下文像素预测驱动的无监督的视觉特征的学习算法,利用周围的图像信息来推断缺失的图像 所构建网络的主要思路是结合Encoder-Decoder网络结构和GAN,Encoder-Decoder阶段用于学习图像特征和生成图像待修补区域对应的预测图,GAN部分用于判断预测图来自训练集和预测集的可能性,当生成的预测图与GroundTruth在图像内容上达到一致,并且GAN的判别器无法判断预测图是否来自训练集或预测集时,就认为网络模型参数达到了最优状态。 编码器的结构采用了部分Al...原创 2022-03-24 22:24:10 · 3986 阅读 · 0 评论