前言
本文是用opencv所做的第一个项目,比较简单,把之前所学知识统筹复习一下,这之间也出现了一些问题,在这里进行汇总。
提示:以下是本篇文章正文内容,下面案例可供参考
一、pycharm设置参数
参数可以通过自己调整,来识别不同的信用卡。
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-t", "--template", required=True,
help="path to input a template")
args = vars(ap.parse_args())
设置参数用的是argparse,先创建ArgumentParser对象,调用add_argument方法,来添加参数,参数是带“-”的,具体怎么设置下文会解释,然后通过调用parse_args()方法来处理参数。
添加参数
一开始自己是直接修改引号里面的内容,但是一直报错,报错内容为需要添加参数,然后就不明白,之后通过百度,了解到在pycharm内部添加与修改参数。
在Run里面有个
点击进去之后,
在parameters行添加参数即可,第一个参数是名称,第二个是路径。空格隔开即可。
二、模板识别工作
1.数字匹配
我们导入了要识别的图片以及模板图片,即识别信用卡上的数字时,我们要先告诉程序什么样的数字对应什么样的模板,这样通过模板的轮廓 外接图形以及其他特征去进行匹配。
匹配完轮廓后的结果为:
代码如下(示例):
# 读取一个模板图像
img = cv2.imread(args["template"])
cv_show('img', img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)
# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)
这些是对图像的常规处理了,灰度图像,二值处理。
# 计算轮廓
# cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
# 返回的list中每个元素都是图像中的一个轮廓
refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)
将轮廓以红色宽度3来绘制出来。内外轮廓都绘制出。
2.轮廓信息保存
代码如下(示例):
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] # 排序,从左到右,从上到下
digits = {}#用于保存轮廓信息
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
# 每一个数字对应每一个模板
digits[i] = roi
三、导入图片
1.卷积化预处理
初始化卷积处理的大小
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
2.图片预处理
image = cv2.imread(args["image"])
cv_show('image', image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray', gray)
常规化处理。
为使数字部分突出,对图像进行礼帽处理,tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel) cv_show('tophat', tophat)
之后对图像进行梯度处理,以及梯度运算,将数字连接起来。
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, # ksize=-1相当于用3*3的
ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")
print(np.array(gradX).shape)
cv_show('gradX', gradX)
# 通过闭操作将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX', gradX)
# THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh', thresh)
# 闭操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
# 闭操作
cv_show('thresh', thresh)
由此得到几个梯度区间,之后再计算每个的轮廓与我们事先保存好的轮廓进行比对。
3.图像轮廓
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0, 0, 255), 3)
cv_show('img', cur_img)
locs = []
得到图像轮廓,对轮廓进行处理,由于信用卡上的数字4个为一组,所以我们4个为一组进行保存。
for (i, c) in enumerate(cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar < 4.0:
if (w > 40 and w < 55) and (h > 10 and h < 20):
# 符合的留下来
locs.append((x, y, w, h))
# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x: x[0])
output = []
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = []
# 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show('group', group)
对每一组的轮廓进行计算,然后用resize处理成合适的大小,用坐标的形式保寸并呈现。
# 计算每一组的轮廓
digitCnts, hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0]
# 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show('roi', roi)
得到一组组处理的结果。
4.匹配输出
将得到的每一组数字与模板进行匹配,并进行评分,得到评分最高的,也就是最适配的保存并输出。
scores = []
# 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append(str(np.argmax(scores)))
# 画出来
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
# 得到结果
output.extend(groupOutput)
# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)