算法竞赛入门经典 每日一题(合并回文子串)

题号:NC13230
时间限制:C/C++ 2秒,其他语言4秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

 

题目描述 

输入两个字符串A和B,合并成一个串C,属于A和B的字符在C中顺序保持不变。如"abc"和"xyz"可以被组合成"axbycz"或"abxcyz"等。
我们定义字符串的价值为其最长回文子串的长度(回文串表示从正反两边看完全一致的字符串,如"aba"和"xyyx")。
需要求出所有可能的C中价值最大的字符串,输出这个最大价值即可

输入描述:

第一行一个整数T(T ≤ 50)。
接下来2T行,每两行两个字符串分别代表A,B(|A|,|B| ≤ 50),A,B的字符集为全体小写字母。

输出描述:

对于每组数据输出一行一个整数表示价值最大的C的价值。

示例1

输入

复制

2
aa
bb
a
aaaabcaa

输出

复制

4
5

思路:

二个字符串就可以想到的是区间dp

那么如何找状态转移方程呢

string a,b 中我们分别用双指i j k l

dpi,j,k,l​∣=dpi+1,j−1,k,l​ (ai=ajai​=aj​,i<ji<j) 

dpi,j,k,l∣=dpi,j,k+1,l−1dpi,j,k,l​∣=dpi,j,k+1,l−1​ (bk=blbk​=bl​,k<lk<l) 

dpi,j,k,l∣=dpi+1,j,k,l−1dpi,j,k,l​∣=dpi+1,j,k,l−1​ (ai=blai​=bl​,i<=ji<=j,k<=lk<=l) 

dpi,j,k,l∣=dpi,j−1,k+1,ldpi,j,k,l​∣=dpi,j−1,k+1,l​ (aj=bkaj​=bk​,i<=ji<=j,k<=lk<=l)

 

const int MAX=52;
int dp[MAX][MAX][MAX][MAX];
int ans;
int main(){
    int t;
    cin>>t;
    while (t--) {
        string a,b;
        cin>>a>>b;
        mms(dp,0);
        ans=0;
        for(int x=0;x<=a.size();x++){
            for(int y=0;y<=b.size();y++){
                for(int i=1,j=x;j<=a.size();i++,j++){
                    for(int k=1,l=y;l<=b.size();k++,l++){
                        if(x+y<=1){
                            dp[i][j][k][l]=1;
                        }
                        else {
                            if(x>1&&(a[i-1]==a[j-1])){
                                dp[i][j][k][l]|=dp[i+1][j-1][k][l];
                            }
                            if(y>1&&(b[k-1]==b[l-1])){
                                dp[i][j][k][l]|=dp[i][j][k+1][l-1];
                            }
                            if(x&&y){
                                if(a[i-1]==b[l-1]){
                                    dp[i][j][k][l]|=dp[i+1][j][k][l-1];
                                }
                                if(a[j-1]==b[k-1]){
                                    dp[i][j][k][l]|=dp[i][j-1][k+1][l];
                                }
                            }
                        }
                        if(dp[i][j][k][l]){
                            ans=max(ans,x+y);
                        }
                    }
                }
            }
        }
        cout<<ans<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭晋龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值