题号:NC13230
时间限制:C/C++ 2秒,其他语言4秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
输入两个字符串A和B,合并成一个串C,属于A和B的字符在C中顺序保持不变。如"abc"和"xyz"可以被组合成"axbycz"或"abxcyz"等。
我们定义字符串的价值为其最长回文子串的长度(回文串表示从正反两边看完全一致的字符串,如"aba"和"xyyx")。
需要求出所有可能的C中价值最大的字符串,输出这个最大价值即可
输入描述:
第一行一个整数T(T ≤ 50)。 接下来2T行,每两行两个字符串分别代表A,B(|A|,|B| ≤ 50),A,B的字符集为全体小写字母。
输出描述:
对于每组数据输出一行一个整数表示价值最大的C的价值。
示例1
输入
2 aa bb a aaaabcaa
输出
4 5
思路:
二个字符串就可以想到的是区间dp
那么如何找状态转移方程呢
string a,b 中我们分别用双指i j k l
dpi,j,k,l∣=dpi+1,j−1,k,l (ai=ajai=aj,i<ji<j)
dpi,j,k,l∣=dpi,j,k+1,l−1dpi,j,k,l∣=dpi,j,k+1,l−1 (bk=blbk=bl,k<lk<l)
dpi,j,k,l∣=dpi+1,j,k,l−1dpi,j,k,l∣=dpi+1,j,k,l−1 (ai=blai=bl,i<=ji<=j,k<=lk<=l)
dpi,j,k,l∣=dpi,j−1,k+1,ldpi,j,k,l∣=dpi,j−1,k+1,l (aj=bkaj=bk,i<=ji<=j,k<=lk<=l)
const int MAX=52;
int dp[MAX][MAX][MAX][MAX];
int ans;
int main(){
int t;
cin>>t;
while (t--) {
string a,b;
cin>>a>>b;
mms(dp,0);
ans=0;
for(int x=0;x<=a.size();x++){
for(int y=0;y<=b.size();y++){
for(int i=1,j=x;j<=a.size();i++,j++){
for(int k=1,l=y;l<=b.size();k++,l++){
if(x+y<=1){
dp[i][j][k][l]=1;
}
else {
if(x>1&&(a[i-1]==a[j-1])){
dp[i][j][k][l]|=dp[i+1][j-1][k][l];
}
if(y>1&&(b[k-1]==b[l-1])){
dp[i][j][k][l]|=dp[i][j][k+1][l-1];
}
if(x&&y){
if(a[i-1]==b[l-1]){
dp[i][j][k][l]|=dp[i+1][j][k][l-1];
}
if(a[j-1]==b[k-1]){
dp[i][j][k][l]|=dp[i][j-1][k+1][l];
}
}
}
if(dp[i][j][k][l]){
ans=max(ans,x+y);
}
}
}
}
}
cout<<ans<<endl;
}
}