关于GDP的ARIMA模型

这是一个时间序列课程论文项目
做了个arima
数据来源是国家统计局的gdp数据
可自行下载

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARMA
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.graphics.tsaplots import acf,pacf,plot_acf,plot_pacf
import time

# 字体设置
font2 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size'   : 20,
}

print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) 

首先,导入数据:

GDP_data=pd.read_excel('GDP年度数据.xls') 
# 切片出gdp数据
gdp_np=np.array(GDP_data.iloc[3,1:])[::-1]
# 创建时间序列
index=pd.date_range('1968','2021',freq='y')
gdp_serise=pd.Series(gdp_np,index=index)

做出GDP图像:

fig=plt.figure(figsize=(12,6))

plt.plot(gdp_serise)
### ARIMA模型用于GDP时间序列分析 #### GDP时间序列的特点 GDP作为宏观经济的重要指标,通常表现为长期增长的趋势,并可能伴随周期性的波动。由于这类数据往往不满足ARIMA模型所需的平稳性假设,因此在应用前需对其进行预处理。 #### 数据准备与预处理 对于非平稳的时间序列数据,如GDP数值,应先执行差分操作以达到稳定化目的[^1]。具体来说,可以通过计算相邻时间段内的变化量来消除趋势成分的影响。此外,还需考虑季节调整等因素,确保所使用的样本能够真实反映经济活动的本质特征。 #### 参数估计 确定合适的参数组合(p,d,q),其中p表示自回归项数;d代表差分阶数;q则是移动平均部分的滞后长度。这一步骤可通过观察ACF/PACF图谱并借助AIC/BIC准则完成最优配置的选择过程[^2]。 ```java // Java代码片段展示如何构建ARIMAModel对象 import org.apache.commons.math3.stat.regression.SimpleRegression; import net.sourceforge.jforexlib.ArimaModel; public class GdpForecast { public static void main(String[] args){ double[] gdpData = {/* 历史年度/季度GDP增长率 */}; int p=1; // 自回归阶数 int d=1; // 差分次数 int q=0; // 移动平均阶数 ArimaModel model = new ArimaModel(gdpData,p,d,q); System.out.println(model.forecast(5)); // 预测未来五期的增长率 } } ``` #### 结果解释与评估 利用拟合好的ARIMA模型对未来一段时间内GDP的变化情况进行预测后,还需要对比实际发生值检验准确性。同时也要注意外部冲击事件可能会给短期走势带来不确定性影响,故而建议结合其他辅助工具共同解读结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值