这是一个时间序列课程论文项目
做了个arima
数据来源是国家统计局的gdp数据
可自行下载
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARMA
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.graphics.tsaplots import acf,pacf,plot_acf,plot_pacf
import time
# 字体设置
font2 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 20,
}
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
首先,导入数据:
GDP_data=pd.read_excel('GDP年度数据.xls')
# 切片出gdp数据
gdp_np=np.array(GDP_data.iloc[3,1:])[::-1]
# 创建时间序列
index=pd.date_range('1968','2021',freq='y')
gdp_serise=pd.Series(gdp_np,index=index)
做出GDP图像:
fig=plt.figure(figsize=(12,6))
plt.plot(gdp_serise)