学习沐神课程 自用深度学习笔记05 线性回归&基础优化算法

本文详细介绍了线性回归的概念,包括引入线性模型、衡量预估质量、训练数据和参数学习。同时,探讨了基础优化算法,如梯度下降和小批量随机梯度下降,讨论了它们的学习率和批量大小的影响。通过代码实现展示了如何在不调用库的情况下训练线性回归模型,并对比了调包版的实现方式。
摘要由CSDN通过智能技术生成

线性回归&基础优化算法

线性回归

导入:

美国买房 价格的影响因素: 卧室个数 卫生间个数 房屋大小 据此给出一个价格

影响因素记为关键因素 成交价记为y 权重为w 偏差为b
关 键 因 素 : x 1 , x 2 , x 3 关键因素: x_1, x_2, x_3 :x1,x2,x3

y = w 1 x 1 + w 2 x 2 + w 3 x 3 + b y = w_1x_1 + w_2x_2 + w_3x_3 + b y=w1x1+w2x2+w3x3+b

引入线性模型

给 定 n 维 输 入       x = [ x 1 , x 2 , … , x n ] T 给定n维输入\,\,\,\,\,\mathbf{x}=[x_1, x_2,\ldots,x_n]^T nx=[x1,x2,,xn]T

线性模型有一个n维权重和一个标量偏差
w = [ w 1 , w 2 , … , w n ] T ,      b \mathbf{w} = [w_1,w_2,\ldots,w_n]^T, \,\,\,\,b w=[w1,w2,,wn]T,b
输出的是y即加权和
y = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b y=w_1x_1+w_2x_2+\cdots+w_nx_n+b y=w1x1+w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值