线性回归&基础优化算法
线性回归
导入:
美国买房 价格的影响因素: 卧室个数 卫生间个数 房屋大小 据此给出一个价格
影响因素记为关键因素 成交价记为y
权重为w
偏差为b
关 键 因 素 : x 1 , x 2 , x 3 关键因素: x_1, x_2, x_3 关键因素:x1,x2,x3
y = w 1 x 1 + w 2 x 2 + w 3 x 3 + b y = w_1x_1 + w_2x_2 + w_3x_3 + b y=w1x1+w2x2+w3x3+b
引入线性模型
给 定 n 维 输 入 x = [ x 1 , x 2 , … , x n ] T 给定n维输入\,\,\,\,\,\mathbf{x}=[x_1, x_2,\ldots,x_n]^T 给定n维输入x=[x1,x2,…,xn]T
线性模型有一个n
维权重和一个标量偏差
w = [ w 1 , w 2 , … , w n ] T , b \mathbf{w} = [w_1,w_2,\ldots,w_n]^T, \,\,\,\,b w=[w1,w2,…,wn]T,b
输出的是y
即加权和
y = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b y=w_1x_1+w_2x_2+\cdots+w_nx_n+b y=w1x1+w