自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(179)
  • 收藏
  • 关注

原创 打包python环境

【代码】打包python环境。

2025-08-11 16:03:27 129

原创 dify小用

安装就是clone,然后启动docker就可以,很简单。1)要先设置好模型供应商。2)工作流各组件作用。

2025-06-26 23:00:00 281

原创 lora微调qwen3-1.7b模型记录

使用 unsloth 加载了 Qwen3-1.7B 模型,并将其配置为支持 LoRA 微调。5)推送微调并合并后的模型到huggingface。对数据集进行处理的代码以及逻辑。2)微调前环境的准备。4)保存微调后的模型。6)推理合并后的模型。

2025-06-26 21:00:00 286

原创 大模型面试题总结

下面把笔记里逐一拆开,围绕「」讲透,便于你真正落地。

2025-06-05 23:30:00 1841

原创 pyspark实践

通过 PySpark,Python 开发者可以方便地进行大规模数据分析和数据挖掘工作,而无需深入了解分布式计算的复杂性。:用于图形处理的库(在 PySpark 中通过第三方库如 GraphFrames 访问)。:用于执行 SQL 查询以及读取数据的库,支持多种数据格式和存储系统。:提供了一个分布式数据集合,使得数据处理和分析更加直观和高效。:用于实时数据流处理的库。pyspark是什么。:用于进行机器学习的库。对csv文件进行处理。

2025-05-27 23:00:00 1999

原创 embedding的微调

1.​​​​​​​​目标:对文本进行准确分类衡量:分类准确率​​目标:将无标签文本分组为有意义类别衡量:聚类质量指标(如轮廓系数)​​目标:判断文本对的标签关系(如是否相似/相关)衡量:分类准确率、F1值​​目标:量化句子对的语义相似程度衡量:模型生成的向量余弦相似度与人工标注的相关性​​目标:根据查询从语料库中匹配相关文档衡量:以nDCG@10为核心指标(兼顾排序质量与相关性)​​目标。

2025-05-22 22:45:00 1192

原创 RAG策略

自定义 RL 环境类(继承gym.Env状态(State):当前 query + 候选 chunk 向量动作(Action):选择哪些 chunk 用作 context奖励(Reward):基于生成答案的准确性、相关性评分。

2025-05-19 21:00:00 854

原创 何不乘东风?利用mcp实现小红书自动发布

1)打开cherry studio,设置—模型服务—ModelScope魔搭—获取密钥,填入密钥即可完成魔搭社区的模型服务配置。然后一键运行:uvx mcpo --config mcpo.json --port 8002。2)配置小红书server和文生图server,设置—MCP服务器—编辑MCP配置。输入验证码,(记住验证码一定要再黑窗口输入,不要直接在页面登录)就会自动登录。再来一遍验证,如果显示“使用cookies登录成功”就登陆成功啦。1)原生代码调用小红书的mcp服务实现自动发布。

2025-05-08 15:55:53 967 2

原创 mcpo的简单使用

mcpo出现的意义非常好,节省了我们配置的时间,从此,我们就可以像访问接口一样使用mcp服务了。找一个mcp服务使用就行,我这里选的是爬虫。然后写个py脚本测试一下。4.此时在浏览器打开。就可以看到接口文档了。

2025-04-22 12:23:52 413

原创 多卡部署与微调

1)模型下载,从魔塔社区直接下载就可,注意模型放的位置,不然存储空间会满导致中途停止下载。这里的多卡环境我是租的autodl的两个3090,实现单机多卡的环境。1.部署Qwen-72B-Chat-Int4。2)conda环境autodl会自己有。3)本地运行(改一下你本地的路径就行)4)vllm多显卡启动命令。

2025-04-21 15:59:07 246

转载 看一下llama大模型吧

引入旋转位置编码(RoPE),提升了模型在处理长文本和捕捉相对位置信息方面的能力(RoPE 的核心思想是将位置信息通过旋转操作嵌入到查询(Query)和键(Key)向量中。4)收集了1M人类偏好数据进行RLHF(先用偏好数据(对同一个问题,不同的大模型的回答进行排序打分)训练一个奖励模型,然后用奖励模型对模型回答进行打分,利用奖励模型提供的反馈,优化预训练模型的输出,使其更符合人类的偏好。RMSNorm专注于**重新缩放(re-scaling)**输入数据,而不是重新中心化(re-centering)。

2025-04-11 16:54:43 82

原创 用户画像(https://github.com/memodb-io/memobase)应用

这里我的配置内容如下config.yaml(因为我是调用的符合openai格式的大模型,所以我没改,如果要是别的大模型的话,需要自己再做兼容)这个画像你可以通过读取数据库中对应的用户id加入到任何一个你自己的社交平台,岂不是美滋滋。这里的助手回应没有处理,就是重复,你也可以换成大模型,这个不重要,重要的是看画像。在图中框出来的地方做兼容,openrouter.py是我新加的。1.下载项目的源代码,我们要先启动后端,用docker启动。后端启动成功,然后我们测试一下,访问,3.写个小demo利用起来。

2025-04-09 19:07:33 647

原创 crawl4ai的实践(爬虫)

4.动态内容抓取(模拟点击“Load More”按钮加载更多内容,再提取 Markdown 文本)6.链接智能提取(过滤外部和社交媒体链接;提取页面中的站内链接并打印前 5 条(链接地址+文字)。8.使用 hook 自定义浏览器行为(方便克制反爬虫)9. 多页爬取保持 session(分页抓取)5.内容过滤与 Markdown 精炼。10.提取结构化数据(非 LLM)11.使用大模型抽取结构化信息。

2025-04-09 16:17:46 1472

原创 MCP实践

----------上面只是一个最简单的clinet实例,并没有连接server端,只是一个demo,下面才是一个完整的demo实现clinet端和server端-----------------------------------------------------------------------------3)clinet端代码连接使用server端提供的mcp服务(这里的大模型用的是github上的key调用的gpt-4o,也是免费的,key自己获取)1)下面的代码实现了论文搜索的功能。

2025-04-07 13:31:38 404

原创 AI爬虫?爬!(附加mcp实践教程)

你以为这就完了吗,不,上面的内容没有一点挑战性,有挑战的是我们本地部署源代码,来替代调用爬虫官网获取的api的作用(你是否还在为大模型的key而感到忧伤和囊中羞涩,openrouter.ai,目前可免费白嫖多个大模型,代码如下。最后得到outputs目录(要注意免费api的速率限制)然后是爬虫代码(下面这段代码就是实现的官网的功能。还有一个用上面免费的大模型来进行对网页的分析。然后得到结果,将结果保存到txt中。8)加入ai功能实现官网的能力。会出现hello world。5)启动服务,第一个服务。

2025-04-03 19:16:53 554

原创 5090安装torch成功版本

1)安装cuda12.8。

2025-04-02 16:25:01 2705 1

原创 从头到尾训练一个百万参数的GPT模型吧

需要了解的前提:1将文本转换为token id作输入用到的库!2训练所需的环境验证gpu是否可用3数据集这个下载的训练集很大,10g左右,我们用不了这么多,处理一下先放到文件夹里面打印一下数据集内容切分数据集,只要其中的一部分,训练集留60万条,测试集留10万条记得将data文件夹中截断之前的数据集删掉将数据集转换为h5格式查看一下h5的内容4介绍transformer流程输入的 tokens 会被转换为 embeddings,并与位置(position)信息相结合。模型包含 64 个。

2025-03-28 16:27:26 761

原创 开源项目解读(https://github.com/zjunlp/DeepKE)

将下载好的checkpoint_bert.zip移动到ner文件夹下并解压缩,然后运行,记得重命名为checkpointints。测试句子有格式要求:{[0][PER]欧阳菲菲}演唱的{[1][SONG]没有你的夜晚},出自专辑{[2][ALBUM]拥抱}修改relation_extraction中的demo.py的路径和tokenizer,完整代码如下。7.将下载好的re和ner对应的文件放到对应的位置。修改选项2和选项3中对应的模型的路径为本地路径。是一个开源的知识图谱抽取与构建工具,支持。

2025-03-27 13:26:41 224 2

原创 基于 Qwen2.5-3B-Instruct 进行 GRPO(Guided Reward Policy Optimization)奖励微调,以优化模型的格式化输出和数值正确性

3)阿里云这个环境下载openai的数据集会报错,需要在本机提前下载下来,然后压缩,将压缩后的main弄到py文件同级目录下。进行参数高效微调(PEFT,Parameter Efficient Fine-Tuning。1.用colab的云服务器进行训练,但是这个会断,不稳定(优点是环境安装很简单,不会报错)补充一下,在阿里云环境中,可以将conda环境加入jupyter,这样就可以一块块运行了。,以优化 GPU 内存占用,并加速推理。,包括标准化问题和答案,使其适用于。2)下载代码中用到的库。

2025-03-25 18:33:42 614 1

原创 用免费的github的key调用gpt实现一个简单的rag自动打分评测系统,不用任何框架

10. 从pdf提取的文本中找到与问题最相似的前两个文本(通过向量找)8.计算两个向量(用户问题和检索到的文本块)的相似度。12.结合上步给出的答案以及真正的答案进行打分。与每个 chunk 的向量计算余弦相似度。4.将上个步骤提取的文本按固定长度分段。6.从指定pdf文件中提取文本内容。返回最相关的文本块(用于回答生成)11.定义提示词实现对问题的回答。相似度排序 → 选前 k 个。5.初始化openai实例。生成 query 向量。7.将文本转换为向量。用户输入 query。

2025-03-24 14:49:20 309

原创 关于playwright的data-testid

唯一定位。

2025-03-13 13:10:51 180

原创 longchain中BaseChatOpenAI的使用

【代码】longchain中BaseChatOpenAI的使用。

2025-03-04 10:58:23 261

原创 docker 运行claude 的computer use

需要注意的是:这里claude操纵的是自己的云服务器,不能访问本地url。

2025-02-27 11:26:23 368

原创 Auto Playwright 项目实战

就是相当于你不用编写选择器了,直接通过文本完成测试,这其中如果想要彻底自动化测试一个项目,需要保证大模型生成的文本ok,而且大模型能够通过文本找到对应的元素。const firstResultTitle = await auto('获取第一个搜索结果的标题文本', { page, test });await auto('在搜索框中输入"Playwright测试"', { page, test });await auto('点击搜索按钮', { page, test });// 获取第一个搜索结果的标题。

2025-02-27 10:38:59 319

原创 如何让大模型优化提示词

3)生成后续候选的提示。

2025-02-25 18:35:06 164

转载 关于函数调用和智能体

所谓的agent,agent,到底什么是agent呢?我的理解是agent就是结合了某个甚至某些函数调用或者仅仅依靠单个或者多个提示词完成某一系列任务的智能体就是agent,agent不单单指某一方面,而是所有方面,例如:一个帮助企业完成数据分析的agent,一个能够自动爬取新闻的agent,下面是实际应用1.函数调用利用 ,LLMs 可以很方便的将自然语言指令转变为相关的函数调用,例如:可以把“给张三发一封邮件询问下他下周五下午是否需要一杯咖啡” 这样的提示转换为 函数调用。1)OPENAI示例:

2025-02-24 14:35:19 108

原创 大模型插件解析

执行流程和流程执行组件的封装。多个Chain可以组合成更复杂的Chain,用来完成复杂任务。

2025-02-21 14:53:23 704

原创 大模型扩充上下文长度

假设我们有一个原始的上下文长度为 512 的模型,使用了位置编码方法来表示序列中的每个词的位置。如果要扩展到 1024 的上下文长度,传统的做法是直接为新的 512 个位置生成新的编码,并直接插入模型中。也就是说,如果训练的时候上下文提高,比如512,变为1024,就会花更多的钱,那么我训练是512,推理的时候上下文用1024可以吗,也可以,但是大模型回答效果会不好,会胡言乱语,这就是上面问题的答案。这样,模型的训练和推理都可以在扩展后的上下文中进行,而不需要完全重新计算和调整所有的编码。

2025-02-20 17:31:37 497

原创 开源项目Perplexica-master

项目clone后,修改配置,项目根目录config.toml 填写对应的大模型的key就行。前端项目,ui文件夹下的.env文件填写。大模型的key可以用groq的,免费(前后端项目各npm i 安装依赖。

2025-02-13 17:33:33 203

原创 智谱平台的检索增强教程与实践与问题发现

1)多个pdf上传存在延迟,表现为问针对于pdf2的问题,回答的依旧是pdf1的相关内容。3)knowledge-id和emedbing-id的联系与关系。教程很简单,但是我发现目前单个知识库好像存在下面问题。2)可不可以指定document-id来进行检索增强。

2025-02-10 10:30:05 231

原创 cline配置glm,deepseek接口进行工作

deep seek. url 是。1.glm,url是。

2025-02-08 11:33:14 451

原创 python:csv文件批量导入mysql

4.将csv文件中的数据插入到mysql中。1.导入sql文件到数据库中。2.插入假数据到对应的表格中。3.查看csv文件的列名。

2025-02-06 17:06:57 476

原创 将打包好的前端代码包转换为apk

昨天闲来无事突然想到能不能将打包好的代码包转换为apk,前端代码包就是可以适配移动端端网页,但是是用react写的,所以无法用hbuilderx打包,也不愿意再更改react native了,所以搜索了一下,发现还真有办法可以解决这个问题。

2025-02-06 10:12:00 571

原创 R语言速通

因子与普通的向量不同,它不仅存储数据的值,还存储这些值的。向量中的每一个元素可以通过下标单独取出,但需要注意的是:R 语言中的"下标"不代表偏移量,而代表第几个,也就是说是从 1 开始的!R 语言为线性代数的研究提供了矩阵类型,这种数据结构很类似于其它语言中的二维数组,但 R 提供了语言级的矩阵运算支持。数据框每一列都有一个唯一的列名,长度都是相等的,同一列的数据类型需要一致,不同列的数据类型可以不一样。3.判断和python一样,if,else if,else,多了个switch(),

2025-02-05 14:48:47 1080

原创 kaggle上传自己的文件并运行

然后你的文件就在根目录了,和input 和kaggle同级,你也可以复制到kaggle/working中(output的路径)cp -r /kaggle/input/你的文件名 随便一个名字。将自己用到的文件压缩,将压缩包通过dataset上传的方式上传到input。然后在终端,解压缩,cd /

2024-12-31 17:35:59 803

原创 小结一下最近的开发

4)用自己租的云服务器实践了nginx的使用,ubuntu的宝塔部署,windows的nginx部署,域名的解析绑定,证书的绑定,主要还是nginx配置的编写。1)langgraph+glm的开发(实现了一些bot,聊天bot,结合搜索的聊天bot,短期记忆的聊天bot)3)开发了一个前端测试工具(熟悉了playwright框架,bash脚本的编写以及subprocess库的使用)2)一些爬虫的开发(爬了一些面试网站的面试题)

2024-12-26 18:49:48 145

原创 调用gpt接口实现访问图片

【代码】调用gpt接口实现访问图片。

2024-12-20 13:50:34 307

原创 windows服务器部署nginx,部署前后端项目记录

修改下nginx.conf就可以成功访问域名出现welcom to. nginx,就不用再访问ip了。然后现在是http:// www.xxxxx.top访问。首先要域名解析(在哪个云买的域名就去哪里解析)然后是配置多个域名,部署多个项目。下一步我们弄成https访问。

2024-12-18 11:48:38 251

原创 加密python项目并打包

在打包后的可执行文件中,资源文件的路径需要特殊处理,因为 PyInstaller 会将资源解压到临时目录中(你需要修改 Flask 代码,让它能够正确访问模板和静态文件。最终会生成一个加密后的可执行文件,既保护了源码,又能直接运行。先测试加密后的 Flask 项目是否能正常运行。Flask 应用将启动,并且能正确加载。运行后,PyArmor会生成一个。假设你有一个Python脚本。将加密代码打包成可执行文件。目录,找到生成的可执行文件(PyArmor 可以结合。

2024-12-18 09:57:23 1784 3

原创 写点提示词?

Sheila 使用 GPT-4 对客户信息数据集进行聚类和营销策略设计,结果显示 LLM 在识别模式和生成报告方面表现优异。通过 CO-STAR 框架,提示内容更具针对性,确保响应满足特定需求。:为 LLM 设定任务规则,让其仅分析指定文本并按结构化格式输出。:用分隔符组织对话情绪分类任务,明确标注情绪分类部分。

2024-12-12 13:39:45 856

spark实践spark实践数据

spark实践spark实践数据

2025-05-27

spark实践数据csv

spark实践数据csv

2025-05-27

mac远程连接云服务器软件备份

mac远程连接云服务器软件备份

2025-02-05

livekit-test-vue-golivekit-test-vue-golivekit-test-vue-golivekit

livekit-test-vue-go

2024-09-05

关于语音合成这方面的一个工具包的使用,第一个模块的测试视频

关于语音合成这方面的一个工具包的使用,第一个模块的测试视频

2024-09-04

java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具j

java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具java的压测道具

2024-08-15

vscode+git基本操作vscode+git基本操作vscode+git基本操作vscode+git基本操作

vscode+git基本操作vscode+git基本操作vscode+git基本操作vscode+git基本操作

2024-07-29

Transformer自然语言处理实战pdf阅读1234章源码

Transformer自然语言处理实战pdf阅读1234章源码

2024-07-24

可以进行纸条抽奖的恋爱盲盒

可以进行纸条抽奖的恋爱盲盒

2024-07-17

mathmathmathmathmathmathmath

mathmathmathmathmathmathmath

2024-07-17

对文本进行情绪识别对文本进行情绪识别对文本进行情绪识别

对文本进行情绪识别对文本进行情绪识别对文本进行情绪识别

2024-07-05

对文本进行情绪多分类,共八种情绪

对文本进行情绪多分类,共八种情绪

2024-07-02

前后端完备的与大模型对话的聊天系统

已经完成的前后端完备的与大模型对话的聊天系统 后端是flask,前端是html,js 实现了上下文,历史记录处理,用户画像

2024-07-01

一个前后端兼备的图书管理系统,前端react,后端flask

一个前后端兼备的图书管理系统,前端react,后端flask

2024-06-21

2d图片转3d模型,简单上手

2d图片转3d模型,简单上手

2024-06-21

ngrok的使用11111111111111111111111

ngrok的使用11111111111111111111111

2024-06-06

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除