前言:
1.第一题(模拟)
2.第二题(模拟)
3.第三题(二维前缀和)
4.第四题的思维(双指针)
5.第五题难度比较大(并查集+删边+离散化)
一.小美的MT
MT 是美团的缩写,因此小美很喜欢这两个字母。
现在小美拿到了一个仅由大写字母组成字符串,她可以最多操作k次,每次可以修改任意一个字符。小美想知道,操作结束后最多共有多少个'M'和'T'字符?
输入描述
第一行输入两个正整数n,k,代表字符串长度和操作次数。第二行输入一个长度为n的、仅由大写字母组成的字符串。1<=k<=n<=10^5
输出描述
输出操作结束后最多共有多少个'M'和'T'字符。
示例 1
输入
5 2
MTUAN
输出
4
说明
修改第三个和第五个字符,形成的字符串为 MTTAM,这样共有 4 个'M'和'T'。
思路与代码
1.首先统计字符串中除了M和T以外的字符的个数,记为add。
2.操作次数为k,因此最多可以min(k,add)将个字符变为M和T
3.再加上之前的M和T字符的个数。
4.结果为n-add+min(k,add);
C++:
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, k, sum = 0;
cin >> n >> k;
string s;
cin >> s;
int add = 0;
for (int i = 0; i < s.size(); i++) {
if (s[i] != 'M' && s[i] != 'T') {
add++;
}
}
sum = n - add + min(k, add);
cout << sum << "\n";
return 0;
}
Java:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n, k, sum = 0;
n = scanner.nextInt();
k = scanner.nextInt();
String s = scanner.next();
int add = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) != 'M' && s.charAt(i) != 'T') {
add++;
}
}
sum = n - add + Math.min(k, add);
System.out.println(sum);
}
}
二.小美的数组询问
小美拿到了一个由正整数组成的数组,但其中有一些元素是未知的(用 0 来表示)。
现在小美想知道,如果那些未知的元素在区间[l,r]范围内随机取值的话,数组所有元素之和的最小值和最大值分别是多少?
共有q次询问。
输入描述
第一行输入两个正整数n,q,代表数组大小和询问次数。
第二行输入n个整数ai,其中如果输入ai的为 0,那么说明ai是未知的。
接下来的q行,每行输入两个正整数l,r,代表一次询问。
1<=n,q<=10^5
0<=ai<=10^9
1<=l<=r<=10^9
输出描述
输出q行,每行输出两个正整数,代表所有元素之和的最小值和最大值。
示例 1
输入
3 2
1 0 3
1 2
4 4
输出
5 6
8 8
说明
只有第二个元素是未知的。
第一次询问,数组最小的和是 1+1=3=5,最大的和是 1+2+3=6。
第二次询问,显然数组的元素和必然为 8。
思路与代码
1.循环一遍,sum记录非0的情况下的和,res统计0的数量。
2.最小值就是0的数量 * 区间左值(res*l),反之最大值就是0的数量*区间右值(res*r)。
3.答案就是最小:sum+res*l,最大:sum+res*r;
C++
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, q;
cin >> n >> q;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int res = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0) {
res++;
}
sum += a[i];
}
for (int i = 0; i < q; i++) {
int l, r;
cin >> l >> r;
cout << sum + res *l << " " << sum + res *r << endl;
}
return 0;
}
Java
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int q = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
int res = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0) {
res++;
}
sum += a[i];
}
for (int i = 0; i < q; i++) {
int l = sc.nextInt();
int r = sc.nextInt();
System.out.println((sum + res * l) + " " + (sum + res * r));
}
}
}
三.小美的平衡矩阵
小美拿到了一个n*n 的矩阵,其中每个元素是 0 或者 1。
小美认为一个矩形区域是完美的,当且仅当该区域内 0 的数量恰好等于 1 的数量。
现在,小美希望你回答有多少个i*i的完美矩形区域。你需要回答1<=i<=n的所有答案。
输入描述
第一行输入一个正整数n,代表矩阵大小。
接下来的n行,每行输入一个长度为n的01 串,用来表示矩阵。
输出描述
输出n行,第i行输出的i*i完美矩形区域的数量。
示例 1
输入
4
1010
0101
1100
0011
输出
0
7
0
1
思路与代码
二维前缀和。n<=200.所以可以n^3进行解决题目
1.枚举所有的边长i的正方形.
2.如果0和1的数量各一半,那么就是判断正方形的和是否为i*i / 2,如果是就++。
3.计算时:
第一层循环枚举矩形长度i,
第二,三层循环分别枚举矩形的左上角的端点(x,y)
对应右下角的端点则为(x+i-1,y+i-1)
C++:
#include <bits/stdc++.h>
using namespace std;
const int N = 510;
int n;
char a[N][N];
int s[N][N];
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> a[i][j];
}
}
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + (a[i][j] == '1');
for (int i = 1; i <= n; i++) {
int cnt = 0;
for (int x = 1; x <= n - i + 1; x++) {
for (int y = 1; y <= n - i + 1; y++) {
int sum = s[x + i - 1][y + i - 1] - s[x + i - 1][y - 1] - s[x - 1][y + i - 1] + s[x - 1][y - 1];
if (sum * 2 == i * i) {
cnt++;
}
}
}
cout << cnt << endl;
}
return 0;
}
Java:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int N = 510;
int n = scanner.nextInt();
char[][] a = new char[N][N];
int[][] s = new int[N][N];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] = scanner.next().charAt(0);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + (a[i][j] == '1' ? 1 : 0);
}
}
for (int i = 1; i <= n; i++) {
int cnt = 0;
for (int x = 1; x <= n - i + 1; x++) {
for (int y = 1; y <= n - i + 1; y++) {
int sum = s[x + i - 1][y + i - 1] - s[x + i - 1][y - 1] - s[x - 1][y + i - 1] + s[x - 1][y - 1];
if (sum * 2 == i * i) {
cnt++;
}
}
}
System.out.println(cnt);
}
}
}
四.小美的区间删除
小美拿到了一个大小为n的数组,她希望删除一个区间后,使得剩余所有元素的乘积末尾至少有k个 0。小美想知道,一共有多少种不同的删除方案?
输入描述
第一行输入两个正整数n,k。第二行输入n个正整数ai,代表小美拿到的数组。
1<=n,k<=10^5
1<=ai<=10^9
输出描述
一个整数,代表删除的方案数。
示例 1
输入
5 2
2 5 3 4 20
输出
4
说明
第一个方案,删除[3]。
第二个方案,删除[4]。
第三个方案,删除[3,4]。
第四个方案,删除[2]。
思路与代码
2和5的因子个数。2*5=10;2^i*5^j == min(i,j)==0的数量 2*5=10
使用双指针
区间的一个长度越大,那么末尾0的个数越多,单调性,
使用双指针
1.我们首先统计整个数组的2和5的因子3数量,和每个元素对应的5的因子数量。
2.维护2个指针l,r
3.如果l,r的区间min(cnt2,cnt5)>=k,我们答案就累加l-r+1;
C++:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int a2[N], a5[N];
int cnt2 = 0, cnt5 = 0;
int n, k, x;
void cnt2_cnt5_count() {
for (int i = 0; i < n; i ++) {
cin >> x;
while (x % 2 == 0) {
a2[i] ++;
x /= 2;
cnt2 ++;
}
while (x % 5 == 0) {
a5[i] ++;
x /= 5;
cnt5 ++;
}
}
}
int main() {
cin >> n >> k;
cnt2_cnt5_count();
int l = 0;
long long res = 0;
for (int r = 0; r < n; r ++) {
cnt2 -= a2[r];
cnt5 -= a5[r];
while (min(cnt2, cnt5) < k && l <= r) {
cnt2 += a2[l];
cnt5 += a5[l];
l ++;
}
res += (long long)(r - l + 1);
}
cout << res << endl;
return 0;
}
Java:
import java.util.Scanner;
public class Main {
static final int N = 1000010;
static int[] a2 = new int[N];
static int[] a5 = new int[N];
static int cnt2 = 0, cnt5 = 0;
static int n, k, x;
public static void cnt2Cnt5Count() {
Scanner input = new Scanner(System.in);
for (int i = 0; i < n; i++) {
x = input.nextInt();
while (x % 2 == 0) {
a2[i]++;
x /= 2;
cnt2++;
}
while (x % 5 == 0) {
a5[i]++;
x /= 5;
cnt5++;
}
}
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
n = input.nextInt();
k = input.nextInt();
cnt2Cnt5Count();
int l = 0;
long res = 0;
for (int r = 0; r < n; r++) {
cnt2 -= a2[r];
cnt5 -= a5[r];
while (Math.min(cnt2, cnt5) < k && l <= r) {
cnt2 += a2[l];
cnt5 += a5[l];
l++;
}
res += (long) (r - l + 1);
}
System.out.println(res);
}
}
五.小美的朋友关系
小美认为,在人际交往中,但是随着时间的流逝,朋友的关系也是会慢慢变淡的,最终朋友关系就淡忘了。
现在初始有一些朋友关系,存在一些事件会导致两个人淡忘了他们的朋友关系。小美想知道某一时刻中,某两人是否可以通过朋友介绍互相认识?
事件共有 2 种:
1 u v:代表编号 u 的人和编号 v 的人淡忘了他们的朋友关系。
2 u v:代表小美查询编号 u 的人和编号 v 的人是否能通过朋友介绍互相认识。
注:介绍可以有多层,比如 2 号把 1 号介绍给 3 号,然后 3 号再把 1 号介绍给 4 号,这样 1 号和 4 号就认识了。
输入描述
第一行输入三个正整数n,m,q,代表总人数,初始的朋友关系数量,发生的事件数量。接下来的m行,每行输入两个正整数u,v,代表初始编号u的人和编号v的人是朋友关系。接下来的q行,每行输入三个正整数op,u,v,含义如题目描述所述。
1<=n <= 10^9
1<= m,q<= 10^5
1<= u,v<= n
1<= op <= 2
保证至少存在一次查询操作。
输出描述
对于每次 2 号操作,输出一行字符串代表查询的答案。如果编号 u 的人和编号 v 的人能通过朋友介绍互相认识,则输出"Yes"。否则输出"No"。
示例 1
输入
5 3 5
1 2
2 3
4 5
1 1 5
2 1 3
2 1 4
1 1 2
2 1 3
输出
Yes
No
No
说明
第一次事件,1 号和 5 号本来就不是朋友,所以无事发生。
第二次事件是询问,1 号和 3 号可以通过 2 号的介绍认识。
第三次事件是询问,显然 1 号和 4 号无法互相认识。
第四次事件,1 号和 2 号淡忘了。
第五次事件,此时 1 号无法再经过 2 号和 3 号互相认识了。
思路与代码
离线处理数据(map)+并查集+逆向思维。
1.离线处理,因为这里的n非常大1e9,后面是使用并查集构造n个节点,father数组肯定装不下.
2.并查集处理加边,删边转换下思路
3.如果我们已经找出所有可能要删除的边,然后假设所有边都删除了,构建一个最终的并查集(这个并查集并不影响后面的删边的情况)。
4.逆向遍历所有的q次操作,如果是查询(1操作),使用并查集直接查出即可;如果是删除(2操作),则往并查集添加边。
C++:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
unordered_map<int, int> father;
int find(int x) {
return father[x] == x ? x : (father[x] = find(father[x]));
}
void merge(int x, int y) {
int i = find(x), j = find(y);
if (i != j)
father[i] = j;
}
struct node {
int op;
int u;
int v;
} A[N];
int main() {
int n, m, p;
cin >> n >> m >> p;
vector<node> all(p);
set<pair<int, int> > q;
set<pair<int, int> > q_del;
for (int i = 0; i < m; i ++) {
int u, v;
cin >> u >> v;
father[u] = u;
father[v] = v;
q.insert({u, v});//初始化需要建立的边
}
int add = 0;
for (int i = 0; i < p; i ++) {
cin >> all[i].op >> all[i].u >> all[i].v;
father[all[i].u] = all[i].u;
father[all[i].v] = all[i].v;
if (all[i].op == 1) {
if (q.count({all[i].u, all[i].v}))
q_del.insert({all[i].u, all[i].v});
else if ( q.count({all[i].v, all[i].u}))
q_del.insert({all[i].v, all[i].u});
else
continue;
}
A[add++] = {all[i].op, all[i].u, all[i].v};
}
for (auto e : q_del) {
int u = e.first, v = e.second;
if (q.count({u, v}) || q.count({v, u})) {
q.erase(e);
}
}
for (auto e : q) {
merge(e.first, e.second);
}
vector<string> res;
for (int i = add - 1; i >= 0; i --) {
if (A[i].op == 1) {
merge(A[i].u, A[i].v);
} else {
if (find(A[i].u) == find(A[i].v)) {
res.push_back("Yes");
} else {
res.push_back("No");
}
}
}
reverse(res.begin(), res.end());
for (string s : res) {
cout << s << endl;
}
return 0;
}
Java:
import java.util.*;
class Main {
static HashMap<Integer, Integer> father = new HashMap<>();
static int find(int x) {
return father.get(x) == x ? x : find(father.get(x));
}
static void merge(int x, int y) {
int i = find(x);
int j = find(y);
if (i != j) {
father.put(i, j);
}
}
static class Node {
int op;
int u;
int v;
Node(int op, int u, int v) {
this.op = op;
this.u = u;
this.v = v;
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int p = scanner.nextInt();
List<Node> all = new ArrayList<>();
Set<List<Integer>> q = new HashSet<>();
Set<List<Integer>> q_del = new HashSet<>();
for (int i = 0; i < m; i++) {
int u = scanner.nextInt();
int v = scanner.nextInt();
father.put(u, u);
father.put(v, v);
List<Integer> edge = new ArrayList<>();
edge.add(u);
edge.add(v);
q.add(edge);
}
List<Node> a = new ArrayList<>();
int add = 0;
for (int i = 0; i < p; i++) {
int op = scanner.nextInt();
int u = scanner.nextInt();
int v = scanner.nextInt();
father.put(u, u);
father.put(v, v);
if (op == 1) {
List<Integer> edge = new ArrayList<>();
edge.add(u);
edge.add(v);
if (q.contains(edge)) {
q_del.add(edge);
} else {
Collections.reverse(edge);
if (q.contains(edge)) {
q_del.add(edge);
} else {
continue;
}
}
}
all.add(new Node(op, u, v));
}
for (List<Integer> e : q_del) {
int u = e.get(0);
int v = e.get(1);
if (q.contains(Arrays.asList(u, v)) || q.contains(Arrays.asList(v, u))) {
q.remove(e);
}
}
for (List<Integer> e : q) {
merge(e.get(0), e.get(1));
}
List<String> res = new ArrayList<>();
for (int i = add - 1; i >= 0; i--) {
if (a.get(i).op == 1) {
merge(a.get(i).u, a.get(i).v);
} else {
if (find(a.get(i).u) == find(a.get(i).v)) {
res.add("Yes");
} else {
res.add("No");
}
}
}
Collections.reverse(res);
for (String s : res) {
System.out.println(s);
}
}
}
最后:
觉得讲解不错的可以关注,反响不错的话,会更新此系列讲解视频,最后的最后祝大家offer满满!!!