生成最小树之prim算法
在讲生成最小树时,我们先了解一下邻接矩阵
什么是邻接矩阵?
定义
邻接矩阵是表示顶点之间相邻关系的矩阵。设G=(v,E)是一个图,其中V={v1,v2,....,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:
(1)对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为零,有向图则不一定如此。
(2)在无向图中,任一顶点的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数。
(3)用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。
我们来看一个图
画的有点抽象但不影响我们进行学习,我们来看看,这个表其实这个表代表着每个节点和某些节点先连的情况,这样我们循环到某一个节点的时候就知道了这个点还可以到哪些点,然后我们在看看有权图矩阵,把里面的0变成一个大数就行了,这是避免权值相等。
我个人认为,生成最小树是一个带有权无向图。
废话不多说了很多废话,上 代码。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
int a[5010][5010];
int book[5010];
int dis[5010];
int n,m;
long long coun=0;
int get_sum(int sum)
{
dis[sum]=0;
int cur;
for(int i=1;i<=n;i++)//有m个节点 遍历n遍
{
cur=-1;
for(int j=1;j<=n;j++)//从当前节点与其他节点联通的权值找最小值
{
if(book[j]==0&&(cur==-1||dis[j]<dis[cur]))
cur=j;
}
//cout<<dis[cur]<<endl;
if(dis[cur]>=INF)//提前结束,这里就不构成了图
return INF;
coun+=dis[cur];
book[cur]=1;//表示这个点走过了,不用走了
for(int k=1;k<=n;k++)
{
if(book[k]==0)//更新当前的最小值
dis[k]=min(dis[k],a[cur][k]);
}
}
return 0;
}
int main()
{scanf("%d%d",&n,&m);
memset(a,0x3f,sizeof(a));//设置成一个很大的数
memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=m;i++)//输入
{
int x,y,len;
scanf("%d%d%d",&x,&y,&len);
a[x][y]=min(len,a[x][y]);//因为是无向图,所以 1,2 2,1都是联通的都需要赋值
a[y][x]=min(len,a[y][x]);
}
long long mm=get_sum(1);
if(mm>=INF)
printf("orz");
else
printf("%lld",coun);
return 0;
}