昨天跟同事聊天,讨论说:为啥最近这几个月,AI界大新闻少了?
最近这阵子,似乎主角基本上都围绕在开源,苹果和Meta各自卷一下,对标下gpt4o的性能。远远没有年初天天有突破、大事儿满天飞的感觉。
回想Q1,一会儿唱个歌,一会儿机器人整个活儿,一会儿生成个长视频,一会儿出个多模态,热闹的不行,天天都有大事件。咋就到Q2,就没了呢~
为什么呢?是不是发展到了新台阶?还是哪里受阻了?
个人觉得,可能几方面都有:
1. 对于AI大模型能做什么,逐渐有了预期:去年许下的愿望,今年都差不多实现了(我之前总结了“五个更” – 更快、更好、更长、更便宜、更多模态,都还在路上)
2. 对于AI大模型不擅长做的事儿,也确实遇到了瓶颈:我认为确实遇到了瓶颈,并非新问题,而是老问题,比如幻觉这事儿依然没啥解,比如逻辑思维这事儿依然不咋地,再比如多个模态的大一统还没到来,依然没见到更好的Transformer们出来。不过,好消息是ScalingLaw还在,于是我就想,是不是因为数据和算力着实不够了?目前几个头部大模型的数据基本都是万卡、十几T Token,没见到数量级的变化。(我也不知道,欢迎讨论)
3. POC门槛越来越低,使得胃口越来越刁钻:一点点的进步,已经不算事儿了。大家不再满足于一个能对话(胡诌八扯)的AI,而是真的希望AI立刻、马上能产生价值,于是…从一种“卧槽”变成了另一种“卧槽”,产生价值这事儿难度很大,商业闭环和落地上还差得远,更多人发出“不过如此”的声音,应用落地任重道远。
4. 技术炒作曲线使然:Gartner的曲线告诉我们,任何新型技术都逃不过从“期望之巅”到“绝望之谷”的起伏,只不过这轮AI大模型的节奏特别快~
我喜欢搞这些研究,就是被这些现象背后的趋势所吸引,且相信时间的力量。既然选择All in AI,就坚持走下去。
不过,对了,还有个好处,就是对于跟进洞察来说,倒是轻松了,大家也不用焦虑到总以为第二天AI就统治地球了,回归实用主义。
最近几个开源论文都在深度分享自己的数据准备和训练过程,看来去年的技术壁垒,现在成了所有人的共识,秀来秀去,回到了浅显易懂但极其繁杂的数据工程和大规模并行计算上。对国内厂商来说,也是个好事儿,毕竟还是千“工程师”易得,而一“算法天才”难求。
随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。