随着AI大模型的普及,越来越多的新手开始涉足这一领域。然而,由于缺乏系统的学习路径和实践经验,新手在学习过程中容易陷入一些常见的误区。本文将总结并分析这些误区,帮助新手避免弯路,更快地掌握AI大模型的精髓。
1. 大模型具有推理能力
误区:一些新手认为大模型具有与人类相似的推理能力。
正确做法:大模型实际上是基于统计概率进行预测的,与人类的推理能力有本质的区别。大模型通过大量数据学习到的是一种模式匹配能力,而不是真正的逻辑推理。因此,新手应该理解大模型的工作原理,避免对其能力有过高的期望。
2. 模型参数越大越厉害
误区:一些新手认为模型参数越多,性能就越好。
正确做法:虽然参数越多的模型通常具有更强的表达能力和学习复杂任务的潜力,但这并不意味着更大的模型在所有任务中都表现优异。更大的模型需要更多的计算资源和内存,且在某些任务上可能不如较小的模型高效。新手应该根据具体任务的需求选择合适的模型大小。
3. 持续与大模型聊天会使其变得更聪明
误区:一些新手认为通过持续与大模型聊天,可以使其变得更聪明。
正确做法:大模型的“聪明”程度取决于其训练数据和模型架构。与模型聊天可以生成更多的数据,但这些数据需要通过预训练或微调的过程才能固化到模型中。因此,新手应该理解模型的训练机制,而不是简单地通过聊天来提高模型的性能。
4. 通过持续的微调可以达到100%的准确率
误区:一些新手认为通过持续的微调,可以使模型达到100%的准确率。
正确做法:大模型的输出本质上是一个概率系统,即使通过持续的微调,也无法达到100%的准确率。模型的架构和计算能力有限,无法涵盖全部知识,且同一知识有多个侧面和不同的理解维度。因此,新手应该理解模型的局限性,合理设置期望值。
5. 忽视数据质量和隐私问题
误区:一些新手认为只要有足够的数据,数据的质量和隐私问题不重要。
正确做法:数据的质量直接影响模型的性能,低质量的数据可能导致模型过拟合或泛化能力差。同时,处理敏感数据时,必须遵守相关的法律法规,保护用户数据的隐私和安全。因此,新手应该重视数据的清洗和预处理,以及数据隐私的保护。
6. 过度依赖预训练模型
误区:一些新手认为只需要使用预训练模型,就能解决所有问题,无需深入了解模型的内部机制。
正确做法:预训练模型虽然强大,但它们也有局限性。理解模型的内部机制和工作原理,可以帮助你更好地调优和应用模型。建议新手在使用预训练模型的同时,深入学习模型的结构和训练方法。
7. 忽视模型解释性
误区:一些新手认为只要模型性能好,解释性并不重要。
正确做法:模型的解释性对于很多应用场景(如医疗、金融等)至关重要。理解模型的决策过程可以帮助用户建立信任,提高模型的可接受性。因此,新手应该学习和应用可解释AI(XAI)技术,提高模型的透明度。
8. 缺乏项目实践
误区:一些新手往往停留在理论学习阶段,缺乏实际项目的实践。
正确做法:理论知识是基础,但只有通过实际项目才能真正掌握和应用所学知识。新手可以从简单的项目开始,逐步尝试更复杂的任务。参与开源项目、竞赛和实习也是很好的实践途径。
9. 忽视社区和资源
误区:一些新手认为自学是最好的方式,忽视了社区和资源的重要性。
正确做法:AI社区和资源非常丰富,包括论坛、博客、教程、论文等。加入社区可以让你更快地解决问题,获取最新的技术和实践经验。新手应该充分利用这些资源,积极参与讨论和交流。
10. 过度依赖单一资源
误区:一些新手往往只依赖一种学习资源,如一本书或一门在线课程。
正确做法:不同的资源有不同的侧重点和深度,结合多种资源可以更全面地学习和理解AI大模型。建议新手多阅读书籍、论文、博客,观看视频教程,参加线上和线下的研讨会。
结论
学习AI大模型是一个系统而复杂的过程,新手容易陷入上述误区。通过避免这些误区,结合理论学习和实际项目实践,新手可以更快地掌握AI大模型的核心技术和应用方法。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。