200+国产大模型,都是什么来头?
- 1785年,瓦特改进了蒸汽机,人类从此摆脱了手工业的桎梏,迈向辉煌的蒸汽时代。
- 1870年,第二次工业革命光芒四溢,人类踏上了电气时代的漫长征程。
- 20世纪70年代后,数字化崛起,人类开始踏入互联网的无尽广阔领域。
时至今日,随着AI算法的不断演化和计算需求的迅猛增长,人工智能时代悄然降临。至于那匹引领人类前进的黑马是谁,是Chat GPT,或者是Chat GLM?我不知道。
但可预见的是,AI大型模型的影响力不亚于蒸汽机、电力、数字化对人类生产方式的影响,它们将为社会技术发展带来另一次飞跃,带来新一轮指数级信息爆炸。
而我国,依然在这场革命中涌现出了强大的科技与智慧的力量。
中国本土大型模型的崛起进程始于2017年,当时中国的科研机构与企业积极投身深度学习与自然语言处理领域,默默耕耘,蓬勃至今。据不完全统计,目前国内已有AI大模型168家(数据来源:http://github.com/wgwang/LLMs-In-China),比题主提到时,足足翻了一倍。
其中,通用模型24个,用于科研/医疗/政务/公共服务的模型40个,其他均为商业应用及服务提供。值得一提的是,其中开源模型只有几家,名列前茅的,分别是智谱AI和清华大学 KEG 实验室联合发布的ChatGLM,以及百川智能推出的Baichuan 2。
随着我们深入了解人工智能,从科幻作品中的描绘,到第一次尝试对话的新奇体验,再到探索大模型的深层架构,我们正将大模型作为自己在物理世界之外的一种智慧延伸。这些智慧触角终将揭开我们科技未来的迷雾。中国的人工智能之路虽漫长曲折,但我们正稳步走出这个序章,迈向光明的未来。
这次的人工智能大模型浪潮带来了许多机遇,去年大模型算法工程师的平均月薪已超 4w,今年 AI 大模型相关岗位需求增长超 300%,现在正是程序员和产品经理等技术相关人才入局的最佳时机。
你现在不了解也没关系,好在现在学习资源非常多,我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。