最近看到一份《DeepSeek从入门到精通》的指南,我熬夜啃完,发现这简直是打工人和自媒体人的“外挂神器”!用大白话总结一下:DeepSeek是一个国产免费开源的AI工具,能写文案、编代码、分析数据,甚至帮你做PPT、剪视频。最关键的是,它不像某些AI只会尬聊,而是真的能解决实际问题!
下面用5分钟说清“普通人如何上手DeepSeek”,看完直接开用!
一、DeepSeek能帮你干啥?记住这3个核心功能
1. 文字工作一键生成
写文章/报告:直接告诉它“写一篇关于气候变化的科普文,要带数据案例,初中生能看懂”。
改文案:把啰嗦的邮件丢给它,说“简化到200字,语气正式但不死板”。
做表格/清单:比如“生成一份杭州三日游攻略,包含景点、预算和交通方式”。
2. 写代码和改bug
小白也能用:对它说“用Python写一个自动整理电脑文件的脚本,要有注释”。
程序员神器:把报错代码贴过去,让它“分析哪里出问题,给出修改建议”。
3. 数据分析+决策辅助
快速算数据:“对比自建仓库和第三方物流5年成本,用ROI模型分析”。
复杂问题拆解:“设计一款解决独居老人安全问题的智能家居产品,列出3种技术方案”。
二、用DeepSeek的秘诀:学会“说人话”
很多人用AI效果差,其实是不会下指令。记住这个万能公式:
“角色+任务+要求+例子”
错误示范:“写个产品文案”(太模糊,AI会瞎编)。
正确姿势:“你是一个资深营销专家,为智能手表写一篇小红书种草文案,突出续航和健康监测功能,语言活泼带emoji,参考这个案例:【附案例链接】”。
避坑指南:
别让AI猜!比如做PPT,要说清“分5页,每页标题+3要点,配图风格科技感”。
警惕“AI幻觉”:如果它编造数据,就追问“这个数据来源是哪里?是否可靠?”
三、打工人必备:3个场景实测
1. 公众号运营
找选题:输入“我是教育类公众号,目标用户是家长,生成10个寒假学习选题”。
写爆款标题:用“数字+痛点+解决方案”,比如“3个方法,让孩子寒假学习效率提升200%”。
2. 小红书/抖音
生成脚本:告诉它“拍一个15秒的早餐教程视频,重点展示制作速度,结尾引导点赞”。
蹭热点:问“本周最火的科技热点是什么?结合智能家居写3条小红书笔记”。
3. 年终总结
填数据:把业绩表格丢给它,说“用柱状图对比每月销售额,分析增长原因”。
升华主题:让它“把‘完成了客户需求’改成‘通过深度洞察用户痛点,驱动产品迭代’”。
四、高阶玩法:让人以为你有个团队
1. 设定专属角色
对AI说:“你现在是资深数据分析师,用Excel整理这份销售表,输出TOP3问题和建议”。
2. 跨领域创新
比如设计产品时,让AI“参考游戏化机制,给在线教育平台加个成就系统”。
3. 人机协作流水线
第一步:AI生成初稿;
第二步:你修改关键点;
第三步:让AI检查逻辑漏洞,最后排版发布。
五、超重要的提示
免费!免费!免费! 个人用完全不用氪金,企业商用也免费(校长团队大气!)。
隐私安全:文件分析功能能直接读PDF/图片,但敏感内容记得脱敏。
持续进化:遇到问题就反馈,这AI居然真会认错:“您提到的偏差确实存在,已调整分析逻辑”。
最后说句大实话:AI不会淘汰人,但会用AI的人正在淘汰不用AI的人。这份指南最厉害的不是技术,而是教我们用AI思维重组工作流——把机械活丢给AI,自己专注创意和决策。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。