ConcurrentHashMap
是 Java 中用于高并发环境的线程安全哈希表。自 Java 1.7 以来,ConcurrentHashMap
进行了显著的改进,特别是在 Java 1.8 中引入了新的实现方式。以下是 Java 1.7 和 Java 1.8 中 ConcurrentHashMap
的主要区别:
Java 1.7
-
Segment-based Implementation:
- 在 Java 1.7 中,
ConcurrentHashMap
使用了一个分段锁的机制,即Segment
。整个哈希表被分为多个段,每个段是一个独立的哈希表,并且每个段都有一个独立的锁来控制对该段的访问。 - 读取操作可以并发进行,只要它们访问不同的段。
- 写入操作(如
put
和remove
)会锁定特定的段,允许对其他段的操作并发进行。 Segment
是ReentrantLock
的一个子类,用于实现对段的加锁。public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> { // Segment array private final Segment<K, V>[] segments; // Segment class static class Segment<K, V> extends ReentrantLock { // Hash table for the segment private final Node<K, V>[] table; } }
- 在 Java 1.7 中,
Java 1.8
-
Bucket-based Implementation:
- Java 1.8 中的
ConcurrentHashMap
使用了一个桶(bucket)数组和链表/红黑树来存储数据,去除了段的概念。 - 内部结构由一个数组(桶数组)和每个桶中的链表(或红黑树)组成。每个桶使用
synchronized
锁来实现并发访问。 - 数据结构改为采用链表和红黑树来提高查询效率。在桶的链表长度超过阈值时,链表会转换成红黑树,提供更好的性能。
- 在 Java 1.8 中,通过
synchronized
锁和CAS
操作,改进了并发性能。 - 提供了更细粒度的锁控制,增加了对并发操作的支持。
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> { // Array of buckets private final Node<K, V>[] table; // Node class for bucket entries static final class Node<K, V> { final K key; volatile V value; volatile Node<K, V> next; } // TreeNode class for red-black tree nodes static final class TreeNode<K, V> extends Node<K, V> { // Red-black tree specific fields } }
- Java 1.8 中的
2. 锁机制
Java 1.7
- Segment Locks:
- 使用
Segment
来实现锁机制,每个Segment
锁定一个段。每个段可以独立处理对该段的读写操作。 - 这种机制允许高并发读取,但写入操作需要锁定整个段,可能导致性能瓶颈。
- 使用
Java 1.8
- Bucket-level Locking:
- 使用桶级别的锁,通过
synchronized
实现对每个桶的锁定。 Java 1.8
引入了非阻塞算法(如CAS
操作)来提高性能。- 当桶中的链表转换为红黑树时,进一步提高了并发性能。
- 使用桶级别的锁,通过
3. 性能改进
Java 1.7
- Segment Locks:
- 在高并发场景下,尽管
Segment
提供了细粒度的锁,但仍可能出现锁竞争和性能瓶颈,尤其是在写操作频繁时。
- 在高并发场景下,尽管
Java 1.8
- Improved Performance:
- 通过更细粒度的锁(桶级别锁)和无锁的
CAS
操作,显著提高了并发性能。 - 红黑树的引入进一步减少了链表的性能问题,在桶的链表过长时提供更快的查询性能。
- 通过更细粒度的锁(桶级别锁)和无锁的
4. 新特性
Java 1.7
- Basic Operations:
- 支持常见的并发操作,如
put
、get
、remove
和containsKey
。
- 支持常见的并发操作,如
Java 1.8
-
Additional Methods:
- 增加了许多新的方法,例如
forEach
、reduce
和compute
等,这些方法支持 Lambda 表达式,使操作更加灵活和简洁。ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>(); map.put("key1", 1); map.compute("key1", (key, value) -> value + 1); // Compute method map.forEach((key, value) -> System.out.println(key + ": " + value)); // forEach method
- 增加了许多新的方法,例如
总结
ConcurrentHashMap
在 Java 1.8 中进行了显著的优化,主要包括:
- 移除
Segment
结构:改为使用桶(bucket)数组和链表/红黑树。 - 细粒度锁:改进为桶级别的锁和非阻塞
CAS
操作,提高了并发性能。 - 增加新特性:支持 Lambda 表达式的操作方法,如
forEach
和compute
。
这些改进使得 ConcurrentHashMap
在高并发环境下表现更佳,尤其是在写操作和查询性能方面。