算法面试题之求根运算

求根运算主要有两种方法:

一种是二分法,这个是比较好理解的

一种是牛顿迭代法,这个有点晦涩,迭代的公式是这样的

x_{n+1}=x_{n}-\frac{f(x_{n})}{f'(x_{n})}

其中

 f(x_{n})=x_{n}^{t}-T

f'(x_{n}) = t*x_{n}^{t-1}

/**
 * 求根运算
 */
public class CalRootTest {

    public static void main(String[] args) {
        System.out.println(byBinarySearch(81,2));
        System.out.println(byNewtonIterator(81,2));
    }

    /**
     * 二分法
     * @param sum
     * @param power
     * @return
     */
    public static int byBinarySearch(int sum,int power){
        int low=0,high=sum,mid,temp;
        while (low<=high){
            mid = (low+high)/2;
            temp = calByPower(mid,power);
            if(temp==sum){
                return mid;
            }else if(temp>sum){
                high = mid-1;
            }else{
                low = mid+1;
            }
        }
        return high;
    }


    /**
     *  牛顿迭代法
     *  f(n) = n^t-T
     *  f'(n) = tn^(t-1)
     *  nextN = n - f(n)/f'(n) = n - (n^t-T)/tn^(t-1)
     * @param sum
     * @param t
     * @return
     */
    public static int byNewtonIterator(int sum,int t){
        return (int) byNewtonIterator(sum,sum,t);
    }

    public static double byNewtonIterator(double n, double sum,int t){
        double res = n - (calByPower(n,t)-sum)/(t*calByPower(n,t-1));
        if(res==n){
            return res;
        }else if(res>n){
            return n;
        }else{
            return byNewtonIterator(res,sum,t);
        }
    }


    private static int calByPower(double t,int power){
        int count = 0, target = 1;
        while (count<power){
            target *= t;
            count++;
        }
        return target;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值