大数据技术之Hadoop(入门)

第1章 Hadoop概述

1.1 Hadoop是什么

1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构

2)主要解决,海量数据的存储和海量数据的分析计算问题;

3)广义上来说,Hadoop通常是指一个更广泛的概念--Hadoop生态圈;

1.2 Hadoop三大发行版本(了解)

Hadoop三大发行版本:Apache、Cloudera、Hortonworks。

  • Apache版本最原始(最基础)的版本,对于入门学习最好。2006

  • Cloudera内部集成了很多大数据框架,对应产品CDH。2008

  • Hortonworks文档较好,对应产品HDP。2011;Hortonworks现在已经被Cloudera公司收购,推出新的品牌CDP。

1)Apache Hadoop

官网地址:http://hadoop.apache.org

下载地址:https://hadoop.apache.org/releases.html

2)Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh

下载地址:https://docs.cloudera.com/documentation/enterprise/6/release-notes/topics/rg_cdh_6_download.html

(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。

(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support

(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。Cloudera的标价为每年每个节点10000美元。

(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。

3)Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/

下载地址:https://hortonworks.com/downloads/#data-platform

(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。

(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。

(3)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。

(4)2018年Hortonworks目前已经被Cloudera公司收购。

1.3 Hadoop优势(4高)

  1. 高可靠性: Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。

  1. 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。

  1. 高效性: 在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。

  1. 高容错性:能够自动将失败的任务重新分配。

1.4 Hadoop组成(面试重点)

Hadoop1.X、2.X、3.X区别:

  • 在 Hadoop 1.x 时代Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,藕合性较大。

  • 在Hadoop 2.x时代,增加了Yarn。 Yarn只负责资源的调度, MapReduce只负责运算。

  • Hadoop 3.x 在组成上没有变化。

1.4.1 HDFS架构概述

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。

1.4.2 YARN架构概述

Yet Another Resource Negotiator简称YARN ,另一种资源协调者,是Hadoop的资源管理器。

1.4.3 MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce。

(1)Map阶段并行处理输入数据

(2)Reduce阶段对Map结果进行汇总

1.4.4 HDFS、YARN、MapReduce三者关系

1.5 大数据技术生态体系

图中涉及的技术名词解释如下:

(1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

(2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;

(3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;

(4)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

(5)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。

(6)Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。

(7)HBase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

(8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

(9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。


第2章 Hadoop运行模式

1)Hadoop官方网站:http://hadoop.apache.org/

2)Hadoop运行模式包括:本地模式、伪分布式模式以及完全分布式模式。

  • 本地模式:单机运行,只是用来演示一下官方案例。生产环境不用。

  • 伪分布式模式:也是单机运行,但是具备Hadoop集群的所有功能,一台服务器模拟一个分布式的环境。个别缺钱的公司用来测试,生产环境不用。

  • 完全分布式模式:多台服务器组成分布式环境。生产环境使用。

2.1 本地运行模式(官方案例---WordCount)

1)创建在hadoop-3.1.3文件下面创建一个wcinput文件夹

[atguigu@hadoop102 hadoop-3.1.3]$ mkdir wcinput

2)在wcinput文件下创建一个word.txt文件

[atguigu@hadoop102 hadoop-3.1.3]$ cd wcinput

3)编辑word.txt文件

[atguigu@hadoop102 wcinput]$ vim word.txt

在文件中输入如下内容
hadoop yarn
hadoop mapreduce
atguigu
atguigu
保存退出::wq

4)回到Hadoop目录

[atguigu@hadoop102 hadoop-3.1.3]$ /opt/module/hadoop-3.1.3

5)执行程序

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount wcinput wcoutput

6)查看结果

[atguigu@hadoop102 hadoop-3.1.3]$ cat wcoutput/part-r-00000

看到如下结果:
atguigu 2
hadoop  2
mapreduce       1
yarn    1

2.2 完全分布式运行模式(开发重点)

2.2.1 虚拟机准备

(1)准备3台客户机(关闭防火墙、静态IP、主机名称)

(2)安装JDK

(3)配置环境变量

(4)安装Hadoop

(5)配置环境变量

(6)配置集群

(7)单点启动

(8)配置ssh

(9)群起并测试集群

2.2.2 编写集群分发脚本xsync

1)scp(secure copy)安全拷贝

(1)scp定义

scp可以实现服务器与服务器之间的数据拷贝。(from server1 to server2)

(2)基本语法

scp -r $pdir/$fname $user@$host:$pdir/$fname

命令 递归 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称

(3)案例实操

前提:在hadoop102、hadoop103、hadoop104都已经创建好的/opt/module、 /opt/software两个目录,并且已经把这两个目录修改为atguigu:atguigu

①在hadoop102上,将hadoop102中/opt/module/jdk1.8.0_212目录拷贝到hadoop103上。

[atguigu@hadoop102 ~]$ scp -r /opt/module/jdk1.8.0_212  atguigu@hadoop103:/opt/module

②在hadoop103上,将hadoop102中/opt/module/hadoop-3.1.3目录拷贝到hadoop103上。

[atguigu@hadoop103 ~]$ scp -r atguigu@hadoop102:/opt/module/hadoop-3.1.3 /opt/module/

③在hadoop103上操作,将hadoop102中/opt/module目录下所有目录拷贝到hadoop104上。

[atguigu@hadoop103 opt]$ scp -r atguigu@hadoop102:/opt/module/* atguigu@hadoop104:/opt/module
2)rsync远程同步工具

rsync主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。

rsync和scp区别:用rsync做文件的复制要比scp的速度快,rsync只对差异文件做更新。scp是把所有文件都复制过去。

(1)基本语法

rsync -av $pdir/$fname $user@$host:$pdir/$fname

命令 选项参数 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称

(2)选项参数说明

选项---->功能

-a ----> 归档拷贝

-v ---->显示复制过程

(2)案例实操

①删除hadoop103中/opt/module/hadoop-3.1.3/wcinput

[atguigu@hadoop103 hadoop-3.1.3]$ rm -rf wcinput/

②同步hadoop102中的/opt/module/hadoop-3.1.3到hadoop103

[atguigu@hadoop102 module]$ rsync -av hadoop-3.1.3/ atguigu@hadoop103:/opt/module/hadoop-3.1.3/
3) xsync集群分发脚本

1)需求:循环复制文件到所有节点的相同目录下

(2)需求分析:

①rsync命令原始拷贝:

rsync -av /opt/module atguigu@hadoop103:/opt/

②期望脚本:

xsync要同步的文件名称

③期望脚本在任何路径都能使用(脚本放在声明了全局环境变量的路径)

[atguigu@hadoop102 ~]$ echo $PATH

/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/atguigu/.local/bin:/home/atguigu/bin:/opt/module/jdk1.8.0_212/bin

(3)脚本实现

①在/home/atguigu/bin目录下创建xsync文件

[atguigu@hadoop102 opt]$ cd /home/atguigu
[atguigu@hadoop102 ~]$ mkdir bin
[atguigu@hadoop102 ~]$ cd bin
[atguigu@hadoop102 bin]$ vim xsync

在该文件中编写如下代码:

#!/bin/bash
#1. 判断参数个数
if [ $# -lt 1 ]
then
    echo "Not Enough Arguement!"
    exit
fi
#2. 遍历集群所有机器
for host in hadoop102 hadoop103 hadoop104
do
    echo ====================  $host  ====================
    #3. 遍历所有目录,挨个发送
    for file in $@
    do
        #4. 判断文件是否存在
        if [ -e $file ]
            then
                #5. 获取父目录
                pdir=$(cd -P $(dirname $file); pwd)
                #6. 获取当前文件的名称
                fname=$(basename $file)
                ssh $host "mkdir -p $pdir"
                rsync -av $pdir/$fname $host:$pdir
            else
                echo $file does not exists!
        fi
    done
done

②修改脚本 xsync 具有执行权限

[atguigu@hadoop102 bin]$ chmod +x xsync

③测试脚本

[atguigu@hadoop102 ~]$ xsync /home/atguigu/bin

④将脚本复制到/bin中,以便全局调用

[atguigu@hadoop102 bin]$ sudo cp xsync /bin/

⑤同步环境变量配置(root所有者)

[atguigu@hadoop102 ~]$ sudo xsync /etc/profile.d/my_env.sh
让环境变量生效
[atguigu@hadoop103 bin]$ source /etc/profile
[atguigu@hadoop104 opt]$ source /etc/profile

2.2.3 SSH无密登录配置

1)配置ssh
(1)基本语法

ssh另一台电脑的IP地址

[atguigu@hadoop102 ~]$ ssh hadoop103
(2)退回到hadoop102
[atguigu@hadoop103 ~]$ exit
2)无密钥配置
(1)免密登录原理
(2)生成公钥和私钥
[atguigu@hadoop102 .ssh]$ pwd
/home/atguigu/.ssh

[atguigu@hadoop102 .ssh]$ ssh-keygen -t rsa

然后敲(三个回车),就会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥)

(3)将公钥拷贝到要免密登录的目标机器上
[atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop102
[atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop103
[atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop104

# 还需要在hadoop103上采用root账号配置一下无密登录到hadoop102、hadoop103、hadoop104服务器上。
[atguigu@hadoop103 .ssh]$ ssh-copy-id hadoop102
[atguigu@hadoop103 .ssh]$ ssh-copy-id hadoop103
[atguigu@hadoop103 .ssh]$ ssh-copy-id hadoop104

[atguigu@hadoop104 .ssh]$ ssh-copy-id hadoop102
[atguigu@hadoop104 .ssh]$ ssh-copy-id hadoop103
[atguigu@hadoop104 .ssh]$ ssh-copy-id hadoop104
3).ssh文件夹下(~/.ssh)的文件功能解释

known_hosts

记录ssh访问过计算机的公钥(public key)

id_rsa

生成的私钥

id_rsa.pub

生成的公钥

authorized_keys

存放授权过的无密登录服务器公钥

2.2.4 集群配置

https://blog.csdn.net/m0_57126939/article/details/129170103

Hadoop是一个开源的大数据处理框架,致力于解决大规模数据存储和处理问题。它采用了分布式计算的思想,能够在集群中高效地存储和处理大量的数据。 Hadoop的核心模块包括Hadoop Common、Hadoop Distributed File System(HDFS)和Hadoop MapReduce。Hadoop Common提供了Hadoop的基本功能和工具,比如文件系统和网络通信等;HDFS是Hadoop的分布式文件系统,能够将大量数据分布式地存储在集群中的多个节点上;MapReduce是Hadoop的计算框架,通过将计算任务分解成多个小任务,并在集群中并行执行,加快了数据处理的速度。 Hadoop的使用有一定的技术门槛。首先,需要配置一个Hadoop集群,包括多台服务器,每台服务器都安装Hadoop软件;然后,需要了解Hadoop的基本概念和组件,比如NameNode、DataNode和JobTracker等;最后,需要掌握Hadoop的编程接口,比如Hadoop Streaming和Hadoop API等,以便进行数据处理和分析。 Hadoop具有许多优点。首先,它具备高容错性,即使集群中的某些节点出现故障,仍然能够保证数据的安全性和完整性;其次,Hadoop具有高可用性,能够自动将计算任务重新分配到其他健康的节点上,从而保证系统的连续运行;此外,Hadoop的可扩展性也非常好,可以根据数据规模的增长动态地扩展集群的规模。 总之,Hadoop是当前大数据处理的重要技术之一,通过分布式计算的思想和优秀的数据处理能力,能够帮助企业更有效地处理和分析大量的数据,并从中获取有价值的信息和洞察。对于初学者而言,掌握Hadoop的基本概念和使用方法,对于后续学习和应用大数据技术是非常有帮助的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值