- 博客(6)
- 收藏
- 关注
原创 Openmmlab学习率调度器用法
如果整个训练过程需要多个调度器一起使用,只需将配置文件中的 scheduler 字段修改为一组调度器配置的列表,SchedulerStepHook 可以自动对调度器列表进行处理。在MMSelfSup中,由于我一开始不知道调度器配置列表的用法,将上述的第二个调度器配置删掉了,导致训练过程全是线性学习率预热过程,学习率一直增加。如果init_lr=4.8,那么线性学习率预热调度器在0到50个epoch,将学习率从init_lr*start_factor线性增加到init_lr。
2024-03-04 21:48:37 330 1
原创 Linux系统torch、torchversion、torchaudio 文件下载地址
whl文件下载:torch、torchversion、torchaudio下载地址:torchversion、torchaudio下载地址:
2024-03-03 11:17:27 596
原创 MMSelfSup在训练过程中调用当前Epoch
在自定义的hook中,使用了一个model的set_epoch的方法。我使用的模型的算法代码在mmselfsup-main/mmselfsup/models/algorithms/simclr_hash.py中,因此,我又给模型定义了一个函数。而我的模型在损失函数计算时,正好有个参数是与模型训练的epoch有关的(然后,在cfg配置文件中,添加以下代码,自定义一个hook,这个hook类型是我们自定义的hook。在调用时,直接用self.epoch就可以获取模型当前的epoch,实现了调用。
2023-10-23 18:10:27 133 2
原创 MMSelfSup根据训练产生的json文件画出Loss曲线
2、下图是训练过程中产生的json文件。可以看到一个epoch会产生多个loss值(epoch是按iter来划分的)。于是取一个epoch中,多个loss值的平均值作为这个epoch的平均loss值。3、程序先根据epoch划分loss值,求出每个epoch对应的平均loss值。最后画出epoch与平均loss值的折线图。1、MMSelfSup官方提供的analysis_logs运行会报错,于是使用以下程序来画loss曲线。
2023-09-21 17:10:12 222
原创 使用MMSelfSup时,报错If capturable=False, state_steps should not be CUDA tensors.
3、我是把MMSelfSup虚拟环境删除了,重新安装了一遍。我害怕如果仅在虚拟环境中把之前的Pytorch卸载了,使用以上语句安装了新的Pytorch后,又与MMCV版本不对应,报其他错误(MMCV必须与Pytorch与cuda的版本对应。MIM安装MMCV时会根据Pytorch与CUDA的版本,自动选择合适的MMCV)。2、查了一下是Pytorch1.12.0版本的bug,无奈只能换个其他版本的Pytorch。我使用以下语句重新安装了Pytorch 1.9.0,然后就不报错了。
2023-09-20 08:54:00 234 1
原创 Linux安装MMSelfSup
4、安装mmselfsup,得开vpn进行克隆项目。注意最后一条语句有个 . 点。3、使用 MIM安装 MMEngine 和 MMCV。2、安装Pytorch。5、测试mmselfsup是否安装成功。1、创建虚拟环境并激活。
2023-09-18 21:12:49 212 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人