汽车数据聚类分析——天池竞赛

本文介绍了参与天池竞赛中汽车数据的聚类分析过程,通过手肘法确定最佳聚类数。文章提供了数据链接,并阐述了手肘法的核心思想,即根据误差平方和SSE随聚类数k变化的规律,找到SSE下降幅度骤减的‘肘部’,以确定最佳的聚类数量。实践表明,在k=2时,聚类效果达到最优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

天池竞赛汽车数据链接:https://pan.baidu.com/s/126CDXOpFbR-J3ST-U83LZA 
提取码:1234

#导入库文件并读取数据
import pandas as pd
from pandas import DataFrame
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
car_data =pd.read_csv("D:/天池竞赛/汽车聚类数据分析/car_price.csv") 
car_data

#空值检测
car_data.isnull().sum()

 

one_matrix = pd.get_dummies(car_data)
# 2. 标准化处理
scaler = MinMaxScaler()
data_scaler = scaler.fit_transform(one_matrix)
SSE = []  # 存放每次结果的误差平方和
for k in range(1, 9):  # K的范围 : 1-9
    estimator = K
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值