我们可以假定“吃饭”的情景。首先,倘若给你盛了一碗米饭,你总不能一口直接吃掉,再者,一粒粒吃又显得效率不高。这个时候,你也知道应该每次小口小口吃才对,在提升效率的同时又能有助于消化,不至于那么狼狈。于是,你一口一口得把一碗饭那给吃完了。但你觉得不过瘾,又吃了一碗。好了,实际上我们已经把三个超参讲完了,每次小口吃的米粒数就是batch_size,一碗饭你吃了多少口,就是多少的iteration,吃了多少碗饭就是多少的epoch。然后我们拿数据说话,假设一碗饭有10000粒米,你每次吃200粒,吃了50口吃完,不够,又吃了3碗饭。对应到神经网络中,10000代表训练的样本数,200代表batch_size,50代表iteration,3代表epoch。