先聊一个人Doug Cutting
Doug Cutting 是一位美国工程师,迷上了搜错引擎。他做了一个用于文本搜索的函数库,命名为Lucene. Lucene 是用java写的,目标是为各种中小型应用软件加入全文搜索功能。Lucene是一套信息检索工具包,并不包含搜索引擎系统,它包含了索引结构、读写索引工具、相关性工具、排序等功能。因此在使用Lucenen时仍需关注搜索引擎系统,例如数据获取、解析、分词等方面的东西。
该项目早期被发布在Doug Cutting的个人网站,后来成为了Apache软件基金会jakarta项目的一个子项目。后来在Lucene的基础上开发了一款可以代替当时的主流搜索的开源搜索引擎,命名为Nutch.
Nutch 是一个建立在Lucene核心之上的网页搜索应用程序,它在Lucene的基础上加了爬虫和一些网页相关的功能,目的就是从一个简单的站内检索推广到全球网络上的搜索上。
随着时间的推移,作为互联网搜索引擎,都面临对象“体积”不断增大的问题。需要存储大量的网页,并不断优化自己的搜索算法,提升搜索效率。
在2004年,Doug Cutting实现了分布式文件存储系统,并将它命名为NDFS(Nutch Distributed File System)。后来他加入了雅虎,将NDFS和MapReduce进行了改造,并重新命名为Hadoop(NDFS也改名为HDFS,Hadoop Distributed File System). 这就是大名鼎鼎的大数据框架系统–Hadoop的由来,而Doug Cutting则被人称为Hadoop之父。
ElasticSearch概述
ElasticSearch,简称es,es是一个开源的高拓展的分布式全文检索引擎,它可以近乎实施的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。es也使用java开发并使用Lucene 作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
谁在使用
- 维基百科,类似百度百科,全文检索,高亮,搜索推荐
- 国外新闻网站,类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据,数据分析。。。
- Stack Overflow国外的程序异常讨论论坛
- GitHub(开源代码管理),搜索上千亿行代码
- 电商网站,检索商品
- 日志数据分析,logstash采集日志,ES进行复杂的数据分析,ELK技术(elasticsearch+logstash+kibana)
- 商品价格监控网站
- 商业智能系统
- 站内搜索
ES和solr的差别
ElasticSearch简介
ElasticSearch是一个实施分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。它用于全文搜索、结构化搜索、分析以及将这三者混合使用:
维基百科使用es提供全文搜索并高亮关键字,以及输入实施搜索和搜索纠错等搜索建议功能;英国公报使用es结合用户日志和社交网络数据提供给他们的编辑以实施的反馈,以便了解龚总对新发表的文章的回应。。。
es是一个基于Apache Lucene™的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好、功能最全的搜索引擎库。想要使用它,必须使用java来作为开发语言并将其直接继承到你的应用中。
solr简介
Solr是Apache下的一个顶级开源项目,采用java开发,是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展、并对索引、搜索性能进行了优化。它可以独立运行,是一个独立的企业及搜索应用服务器,它对外提供类似于web-service的API接口。用户可以通过http请求,像搜索引擎服务器提交一定格式的文件,生成索引;也可以通过提出查找请求,并得到返回结果。
两者比较
- 当单纯的对已有数据进行搜索时,Solr更快
- 当实时建立索引是,Solr会产生io阻塞,查询性能较差,ElasticSearch具有明显的优势
- 随着数据量的增加,Solr的搜索效率会变得更低,而Elasticsearch却没有明显的变化
总结
- es基本是开箱即用,非常简单。而solr会有点复杂。
- Solr利用Zookeeper进行分布式管理,而elasticsearch自身带有分布式协调管理功能
- solr支持更多格式的数据,比如json xml csv。而es只支持json文件格式
- solr官方提供的功能更多,而elasticsearch更注重核心功能,高级功能由第三方插件提供
- solr查询快,但更新索引时慢,用于电商等查询多的应用
- es建立索引宽,即实时性查询快,用于facebook新浪等搜索
- solr较成熟,有一个更大,更成熟的用户、开发和贡献者社区,而elasticsearch相对开发维护者较少,更新太快,学习使用成本较高
ELK的安装的准备
ELK的下载地址
ElasticSearch:https://mirrors.huaweicloud.com/elasticsearch/?C=N&O=D
logstash:https://mirrors.huaweicloud.com/logstash/?C=N&O=D
可视化界面elasticsearch-head:https://github.com/mobz/elasticsearch-head
kibana:https://mirrors.huaweicloud.com/kibana/?C=N&O=D
ik分词器:https://github.com/medcl/elasticsearch-analysis-ik
ElasticSearch安装
注:安装ElasticSearch之前必须保证JDK1.8+安装完毕,并正确的配置好JDK环境变量,否则启动ElasticSearch失败。
下载windows版本
解压压缩包,打开,看到如下目录:
打开config文件夹:
双击bin目录下的elasticsearch.bat启动
点击后:
在浏览器访问127.0.0.1:9200,若得到以下信息则安装成功:
安装es的图形化界面插件
下载nodejs:https://nodejs.org/en/
LTS:长期支持版本
安装:下一步下一步 。。。
查看版本:
下载elasticsearch-head-master.zip:
解压后安装依赖,一定要跳转到该解压文件夹下输入该命令:
npm install下载有问题请使用cnpm install命令
给出了访问地址:http://localhost:9100
访问测试:
由于ES进程和客户端进程端口号不同,存在跨域问题,所以需要在ES的配置文件中配置下解决跨域问题:(注意点在于闪退问题,文件编码一定改为UTF-8)
重新启动es,使用head工具进行连接测试:
了解ELK
ELK是ElasticSearch 、 Logstash、Kibana三大开源框架首字母大写简称。市面上也称为Elastic Stack。Lostash是ELK的中央数据流,用于从不同目标(文件/数据存储/MQ)收集的不同格式数据,经过过滤后支持输出到不同目的地。Kibana可以将elastic的数据通过友好的页面展示出来,提供实时分析的功能。
市面上很多开发只要提到ELK能够一直说出它是一个日志分析架构技术栈总称,但实际上ELK不仅仅适用于日志分析,它还可以支持其他任何数据分析和手机的场景,日志分析和收集知识更具有代表性。并非唯一性。
安装Kibana
Kibana是一个针对ElasticSearch的开源分析及可视化平台,用来搜索、查看交互存储在ElasticSearch索引中的数据。使用Kibana,可以通过各种如表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础构架,几分钟内就可以完成Kibana安装并启动Elasricsearch索引检测。
下载:https://mirrors.huaweicloud.com/kibana/?C=N&O=D需要和es版本对应
解压
进入bin目录,启动服务
访问IP:5601
配置成中文:
中文包在:kibana-7.6.1-windows-x86_64\x-pack\plugins\translations\translations
重启,查看效果:
ES核心概念
ElasticSearch是面向文档型的数据库,一条数据在这里就是一个文档。比如:
{
"name" : "John",
"sex" : "Male",
"age" : 25,
"birthDate": "1990/05/01",
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
在MySql中这样的数据存储容易想到建立一张User表,其中有一些字段,而在es中就是一个文档,文档会属于一个User类型,各种各样的类型存储于一个索引中。下表是关系型数据库和es的疏于对照表:
es中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多个文档(行),每个文档又包含多个字段(列)。
物理设计:
es在后台把每个索引划分成多个分片,每个分片可以在集群中的不同服务器中转移。
逻辑设计:
一个索引类型,包含多个文档,当我们索引一篇文档时,可以通过这样的顺序找到他: 索引-》类型-》文档id(该id实际是个字符串),通过这个组合我们就能索引到某个具体的文档。
文档
es是面向文档的,意味着索引和搜索数据的最小单位是文档,es中,文档有几个重要的属性:
自我包含,一篇文档同时包含字段和对应的值,也就是同时包含key:value
可以是层次性的,一个文档中包含自文档,复杂的逻辑实体就是这么来的
灵活的结构,文档不依赖预先定义的模式,我们知道关系型数据库中,要提前定义字段才能使用,在es中,对于字段是非常灵活的。有时候,我们可以忽略字段,或者动态的添加一个新的字段
尽管我们可以随意的添加或忽略某个字段,但是,每个字段的类型非常重要。因为es会保存字段和类型之间的映射以及其他的设置。这种映射具体到每个映射的每种类型,这也是为什么在es中,类型有时候也称为映射类型。
类型
类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。类型中对于字段的定义称为映射,比如name映射为string类型.我们说文档是无模式的,他们不需要拥有映射中所定义的所有字段,当新增加一个字段时,es会自动的将新字段加入映射,但是这个字段不确定他是什么类型,所以最安全的方式是提前定义好所需要的映射。
索引
索引是映射类型的容器,es的索引是一个非常大的集合。索引寻出了映射类型的字段和其他设置。然后他们被存储到了各个分片上。