大数据毕业设计Python+Spark知识图谱高考志愿推荐系统 高考数据分析 高考可视化 高考大数据 计算机毕业设计 机器学习 深度学习 人工智能

本文详细描述了一种基于Python爬虫技术抓取高考数据,通过Echarts进行可视化展示,利用协同过滤算法进行推荐,并结合SpringBoot和Vue.js实现前后端分离的系统。研究涵盖了数据获取、数据库管理、数据分析和预测以及系统开发的全过程。
摘要由CSDN通过智能技术生成

论文(设计)主要内容(提纲):

摘要

英文摘要

1  引言 

 研究背景
1.2  研究的目的和意义
1.3  国内外研究现状

1.4  研究主要内容与技术

1.4.1研究内容

1.4.2研究技术

2  基于python爬虫的数据爬取和数据库的建立

2.1  高考信息表

2.5  数据库的建立

3  数据进行展示、科学分析和预测

3.1  基于echarts进行可视化展示

3.2  协同过滤推荐算法实现

3.4  数据管理功能

4  系统的建立和展示

4.1  基于springboot+mybatis后端开发

4.2  基于html、echarts、vue前端开发

4.3  系统的最终调试

5  结束语

参考文献

致谢

技术路线

爬虫技术:使用python的requests框架采集高考数据API接口的历年高考数据(省控线、专业线、学校信息、专业信息等)

前端技术:echarts、vue.js

后端技术:springboot、mybatis

算法技术:协同过滤算法(基于用户+基于物品两种模式实现)

实验方案

搭建echarts大屏可视化案例并集成到系统中;
SpringBoot+Vue.js前后端分离完成web开发;
熟悉协同过滤算法的原理,并且编写算法代码对系统数据进行推荐;
独立使用MySQL数据库和navicat终端完成数据表设计;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值