太完整了!java编程思想第六版

本文详细介绍了InnoDB存储引擎的内存结构,包括Buffer Pool、Change Buffer和Log Buffer,以及它们的工作原理和优化策略。同时,文章还探讨了InnoDB的磁盘结构,如Tablespace、System Tablespace和Doublewrite Buffer,强调了它们在数据可靠性中的作用。对于Java开发者和数据库管理员,理解这些概念对于提高数据库性能和保证数据安全至关重要。
摘要由CSDN通过智能技术生成

前言

今年的金三银四已经过去一大半了,在这其中参与过不少面试,2021都说工作不好找,这也是对开发人员的要求变向的提高了。
之前在Github上收获15K+star的Java核心神技(这参数,质量多高就不用我多说了吧)非常全面,包含基础知识、Java集合、JVM、多线程并发、spring原理、微服务、Netty 与RPC 、Kafka、日记、设计模式、Java算法、数据库、Zookeeper、分布式缓存、数据结构等等内容非常丰富,已经帮很多人拿下互联网一线公司的offer

InnoDB总体结构

首先我们来看官网的一张图(图片来源于MySQL官网):

image

从上图中可以看出其主要分为两部分结构,一部分为内存中的结构(上图左边),一部分为磁盘中的结构(上图右边)

内存结构

InnoDB内存中的结构主要分为:Buffer Pool,Change Buffer和Log Buffer三部分。

Buffer Pool

Buffer Pool是InnoDB缓存表和索引的一块主内存区域,Buffer Pool允许直接从内存中处理经常使用的数据,从而加快处理速度,带来一定的性能提升。 但是缓存总有放满的时候,当缓存满了新来的数据怎么处理呢?Bufer Pool中采用的是LRU(least recently used,最近最少使用)算法,LRU列表中最前面存的是高频使用页,尾部放的是最少使用的页。当有新数据过来而缓存满了就会覆盖尾部数据。

假如我们有一条查询语句非常大,返回的结果集直接就超过了Buffer Pool的大小,而这种语句使用场景又是极少的,可能查询这一次之后很久不会查询,而这一次就将缓存占满了,将一些热点数据全部覆盖了。为了避免这种情况发生,InnoDB对传统的LRU算法又做了改进,将LRU列表分拆分为2个,如下图(图片来源于MySQL官网):

image

该算法在new子列表中保留大量页面(5/8),old子列表包含较少使用的页面(3/8);old子列表中数据可能会被覆盖,该算法具体操作如下:

  • 3/8的Buffer Pool空间用于old子列表

  • 列表的中点是new子列表的尾部与old子列表的头部之间的边界

  • 当InnoDB将一个页面读入缓冲池时,它首先将它插入到中间点(old子列表的头)。读取的页面是由用户发起的操作(比如SQL查询)或InnoDB自动执行的预读操作

  • 访问old子列表中的页面使其“young

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值